Teacher Reading
Causal Particle-Spring model of mechanical waves 

Why does a wave on a spring that strikes a fixed boundary reflect back upside down whereas when it strikes a free end it reflects right side up?  Why does the speed of a wave change as it travels from one material to another?  What causes a disturbance to travel away from its starting point in the first place?

All of these questions (and many others) may arise in our minds or in the minds of our students as we study the waves unit.  It is helpful to have in mind a simple physical model that can explain the behaviors we are investigating.  If time allows, it may even be worth presenting the model to the students.  In addition to providing a unifying framework for them to construct an understanding of the phenomenon of waves, it also provides an opportunity to cycle back and reinforce previously learned material.

How does a wave move through a solid?

Longitudinal Waves

Consider the model shown in Figure 1.  We imagine a material such as a guitar string, a metal bar or a brass chime to be divided into a large number of point masses, all connected to each other by springs
.  When a pulse is created by an outside disturbance D, the first mass is displaced from equilibrium to the right.  As the mass moves to the right it compresses the spring between itself and its neighbor to the right. This force pushes the next mass to the right and slows down the mass to the left.  The springs keep getting compressed and relaxed as the wave passes through and the disturbance propagates.


Figure 1.  A point mass and spring model of an elastic medium.  Each particle has mass m and is connected to its nearest neighbor by a spring with an elastic constant k.  Initially, the spacing between the masses is l, producing a tension T = kl  in the material.  A disturbance D initiates a horizontal displacement of the masses that travels along the line.
Transverse Waves

Consider the model again but now the outside disturbance D is perpendicular to the medium.  Some of the masses are displaced from equilibrium.  Each new mass is being pulled upward by its neighbor to the left.  When the medium is under tension, as the mass begins to move up it experiences a downward force between itself and its neighbor to the right.  This has two effects.  First, this force opposes the displacement of the mass and reduces its net upward force, and second, by Newton’s third law, it imposes an equal upward force on the neighboring mass to the right, and the disturbance propagates.

How fast do waves travel?

Even with such a simple picture, one can understand the factors that determine the rate at which the pulse propagates.  The model parameters affecting the speed are k, l, and m.  Larger masses m tend to slow the rate of the pulse because they accelerate more slowly for a given force. Larger l means the particles are farther apart which lowers the linear density which increases the wave speed. Larger spring constants and the same stretch or more tension between the masses produces greater accelerations.  The ratio of these two competing effects is proportional to the square of a characteristic speed with which the pulse travels. These effects lead to the following equations for velocity.  All of the equations have something to do with the force between particles (which can be called the elastic property of the medium) on the top and something to do with inertia on the bottom.  So in general terms each equation is:
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Longitudinal Wave through masses connected by springs:
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Using the variables in the model on the previous page.

Transverse Wave through masses connected by springs:
This equation is valid if the amplitude is very small.  If the amplitude is large, the velocity of the wave becomes wavelength dependent.  
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kl2 is replaced by the tension in the chain of particles and the mass is replaced by the linear density (mass per unit length) of the chain.

Wave on a string:

[image: image4.wmf]L

ρ

T

=

v


Ends up being the same as the previous equation T is the tension in the string.

Transverse Wave in a solid:
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S is shear modulus, which simply put is how hard it is to slide the layers of a solid across each other.

Longitudinal Wave in a fluid:
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B is bulk modulus, which simply put is how hard it is to compress a substance.

Longitudinal Wave in a solid:
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Both bulk and shear moduli are used.
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  If the rod is very thin then Young’s modulus is sometimes used.  Simply put, Young’s modulus is how hard it is to change the length.

Table 1.  Wave speed equations.  

(a)


(b)


(c)


(d)


(e)


Figure 2.  A wave pulse strikes a fixed boundary and reflects as an inverted pulse.  To understand why this happens, consider the forces acting on the mass m nearest the boundary.  (See text.) 

Why do some waves bounce off a boundary upright, while others invert?

This model can help students to understand the various phenomena that take place at the boundary between two materials, such as two springs of different densities.  It can also help them to understand fixed and free boundaries.


Explanation 1- Newton’s laws.  Consider first a transverse wave pulse colliding with a fixed endpoint, as shown in Figure 2
.  As the wave approaches the boundary, each successive mass is pulled up by the spring to the left as described previously.  Notice that the mass m nearest the boundary applies an upward force to the boundary as it is displaced upwards.  The boundary exerts an equal and opposite downward force on the particle for the entire time that the particle is above the equilibrium position.  This force is analogous to the force of a floor on basketball.  The floor imposes an upward force on the ball until the ball leaves the floor.  As a result, the ball is accelerating upward for the entire time of contact, and leaves with nearly the same kinetic energy it had before the bounce. Similarly, the spring mass m will have nearly the same energy at the end of the reflection that it had when it first tried to pull the boundary upward.  

Explanation 2 - Momentum/Impulse.  A more intuitive argument can be made by considering the momentum of the mass/boundary system.  The interaction between the spring and the boundary is analogous to the collision of a light object against a heavier stationary object.  In their momentum lab, or in their own experience, students understand that in collisions between carts of dissimilar masses a heavier stationary cart tends to move away with a very low speed as the lighter cart rebounds with a speed nearly equal to its incoming speed.  At the same time, the speed of the rebounding lighter cart becomes closer and closer to its incident speed.  Thus the change in momentum of the lighter cart approaches -2p.  By analogy, the small mass m interacts with the boundary with very large mass and is reflected downwards with opposite momentum that it had initially, and the wave is inverted.  A similar argument can be made to explain why a free end does not reflect a wave inverted; instead, it reflects it upright.  


It may take the students some time to assimilate the idea that momentum conservation can be applied in spite of the fact that the interacting objects don’t seem to be hitting each other (they are moving parallel or antiparallel) and transverse to the motion of the pulse.  This is a good opportunity to review the Impulse-Momentum theorem, and the vector nature of momentum.





Figure 3.  Reflection off a free end.  A spring-mass system is attached to a slider (red), so that the end is free to slide vertically. An upright incoming pulse reflects upright.  See text for an explanation.


One may again consider the forces of interaction to explain why a wave incident on a free end reflects upright.  Figure 3 shows an upright pulse traveling to the right.  For simplicity, the free end is allowed to move up and down a slider, but not horizontally.  In this case, tension can be maintained in the wave.  Consider the forces acting on the last particle in the system.  Unlike the other elements, it experiences no downward force from its neighbor to the right  (the slider) as it is pulled up from the left. It only feels the force from its neighbor to the left.  This force is upward at first, and then downward, but its inertia has carried it far above the amplitude elsewhere.  As a result, it pulls back up with an equal force on the chain of masses as it is pulled down, starting an upright pulse in the opposite direction.   

Conclusion

We have begun to develop a model that can explain certain key behaviors of waves.  The explanation can be made in simple terms that are based on previously learned concepts.  As a result, a well-integrated development of the model into a unit on waves can complement the particle model approach to mechanics in the first semester.  This model is robust enough to be applied to each of the major objectives in the mechanical waves unit.    


Further implementation of this model should extend it to an explanation of the behavior of longitudinal waves generally, and sound in particular.  The model will require some modification to account for the much weaker interactions between air particles.  Some progress has been made toward this goal.  We believe that an intuitive model of sound propagating through air particles will fit well with the current model. 


One should be aware of some of the limitations of the model. The model does not include dissipation or the effect of impurities or grain boundaries in a solid, although these could be added to the model with some difficulty.  Its one-dimensional nature presents an interesting dilemma.  Models that include two or more dimensions are frequently more realistic; however they increase dramatically in their complexity over one-dimensional models.  They do not afford as easy an intuitive understanding as does a one-dimensional model.   Students interested in pursuing two- and three-dimensional waves such as seismic waves or acoustic vibrations will be well served by the basic understanding provided by this one-dimensional model.
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� For crystalline solids, you can actually take this further, and assume that the masses are in fact th atoms or molecular base units in the crystalline lattice, and that the elastic springs represent the intermolecular bonding forces.  One can in fact find a direct relationship between the speed of sound in a solid and the strength of the intermolecular forces.  (See, e.g. Neil W. Ashcroft and N. David Mermin, Solid State Physics, HRW, Orlando, 1976, Chap. 22)
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