\qquad
Date \qquad Pd \qquad
Constant Velocity Particle Model Worksheet 2: Motion Maps and Velocity vs. Time Graphs
Sketch velocity vs. time graphs and motion maps corresponding to the following descriptions of the motion of an object.

1. The object is moving in the positive direction at a constant (steady) speed.		$\xrightarrow[\text { time }]{ }$
2. The object is standing still.		$\xrightarrow[\text { time }]{ }$
3. The object moves in the negative direction at a steady speed for 10 s , then stands still for 10s. Motion Map: 0 m		$\overrightarrow{\text { time }}$
4. The object moves in the positive direction at a steady speed for 10 s, reverses direction and moves back toward the negative direction at the same speed. Motion Map: 0 m	$\begin{aligned} & \\ & \frac{2}{0} \\ & \frac{0}{0} \\ & \stackrel{0}{3} \\ & \end{aligned}$	$\xrightarrow[\text { time }]{ }$

Draw the velocity vs time graphs for an object whose motion produced the position vs time graphs shown below at left.
5.

6.

7.

8. For many graphs, both the slope of the line and the area between the line and the horizontal axis have physical meanings.
a. What does the slope of a position time graph tell you about the motion of an object?
b. Looking at the velocity time graphs, determine the units for a square of area on the graph.
c. What does the area "under the velocity-time graph" tell you about the motion of an object?

