\qquad

Constant Velocity Particle Model: Review Sheet

Date \qquad Pd \qquad

a. Determine the average velocity of the object.
b. Write a mathematical expression to describe the motion of the object.
2. Shown below is a velocity vs. time graph for an object.
a. Describe the motion of the object.

b. Draw a corresponding position vs. time graph. Number the axes. You may assume the object starts from zero position.

c. How far did the object travel in the interval $\mathrm{t}=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$?
d. Find the displacement from $\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=5 \mathrm{~s}$. Explain how you got your answer.
e. Find the average velocity from $\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=5 \mathrm{~s}$. Explain how you got your answer.
f. Find the average speed from $t=0 \mathrm{~s}$ to $\mathrm{t}=5 \mathrm{~s}$. Explain how you got your answer.
3. A bird travels toward zero position, then suddenly reverses direction.

a. Find the average velocity from $\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=10 \mathrm{~s}$.
b. Find the average velocity from $t=10 \mathrm{~s}$ to $\mathrm{t}=20 \mathrm{~s}$.
c. Determine the average speed from $\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=20 \mathrm{~s}$.
d. Determine the average velocity from $\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=20 \mathrm{~s}$.
e. Find the velocity at $\mathrm{t}=5$ seconds.
4. A basketball initially travels at 3 meters per second for 3 seconds:
a. Describe the motion of the ball after $t=3$ seconds.

b. Draw a quantitative motion map that represents the motion of the object.

c. How far did the ball travel from $t=3 \mathrm{~s}$ to $\mathrm{t}=7 \mathrm{~s}$?
5. A racecar reaches a speed of $95 \mathrm{~m} / \mathrm{s}$ after it is 450 meters past the starting line. If the car travels at a constant speed of $95 \mathrm{~m} / \mathrm{s}$ for the next 12.5 s , how far will the car be from the starting line? Use the appropriate mathematical expression and show how units cancel.

