## AP 2 Fluids WS 3

What es your nombre? $\qquad$

"They are what we thought they were." Dennis Green, Arizona Cardinals head coach.

1. How far must a 2.0 cm diameter piston be pushed down into one cylinder of a hydraulic lift to raise an 8.0 cm diameter piston by 20 cm ?
2. A 6.00 diameter sphere with a mass of 89.3 g is neutrally buoyant in a liquid. Identify the liquid.
3. You and your friends are playing in the swimming pool with a 60 cm diameter beach ball. How much force would be needed to push the ball completely under water?
4. A porthole on a sub has an area of $0.380 \mathrm{~m}^{2}$. It is at a depth of 9562 m in the Pacific Ocean. So what is the force acting on the porthole?

5. a. The 70 kg student in the figure on the left balances a 1200 kg elephant on a hydraulic lift. What is the diameter of the piston the student is standing on?
6. As a person dives toward the bottom of a swimming pool, the pressure increases noticeably. Does the buoyant force also increase? Explain. Neglect any change in water density with depth.
7. ( 10 points)

A diver descends from a salvage ship to the ocean floor at a depth of 35 m below the surface. The density of ocean water is $1.025 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
(a) Calculate the gauge pressure on the diver on the ocean floor.
(b) Calculate the absolute pressure on the diver on the ocean floor.

The diver finds a rectangular aluminum plate having dimensions $1.0 \mathrm{~m} \times 2.0 \mathrm{~m} \times 0.03 \mathrm{~m}$. A hoisting cable is lowered from the ship and the diver connects it to the plate. The density of aluminum is $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Ignore the effects of viscosity.
(c) Calculate the tension in the cable if it lifts the plate upward at a slow, constant velocity.
(d) Will the tension in the hoisting cable increase, decrease, or remain the same if the plate accelerates upward at $0.05 \mathrm{~m} / \mathrm{s}^{2}$ ?
$\qquad$
increase $\qquad$
$\qquad$ remain the same
Explain your reasoning.

