\qquad
\qquad
\qquad

Wave Optics: Interference ws 3

1. Dan Sinkween is standing on a beach watching waves come through two openings in a wave break. The water waves are 3.0 m long and he is standing 26.5 m from one opening and 31.0 m from the other. Will there be waves at his feet or not?
2. Two speakers are vibrating in phase at 170 Hz . Ken E. Doit is standing 10.m from speaker A. What are 3 distances someone could move speaker B from Ken to provide destructive interference if he remains 10 m from speaker A? Give 3 distances for constructive interference.
3. Two sources, S1 and S2, are producing an interference pattern. Constructive interference occurs at point P , which happens to be on the third constructive line past the center (zero order) line. The distance from S 1 to P is 30 cm and the distance from S 2 to P is 24 cm . What is the wavelength being produced? Draw a sketch of the situation.
4. Two sources, S 1 and S 2 , are producing 2.0 cm wavelength waves. Destructive interference occurs at point P , which happens to be on the second destructive line past the center (zero order) line. The distance from S 1 to P is 26 cm . What is the distance between S 2 and P ? Draw a sketch of the situation.
5. Waves are produced by two point sources S and S^{\prime} vibrating in phase. See the accompanying diagram. X represents the location of the $2^{\text {nd }}$ interference minima. The path difference $\mathrm{SX}-\mathrm{S}^{\prime} \mathrm{X}$ is 4.5 cm . The wavelength of the waves is approximately?

6. Monochromatic light falls on a single slit 0.01 cm wide and develops a first-order minimum (dark band) 0.59 cm from the center of the central bright band on a screen that is one meter away. Determine the wavelength of the light.
7. Two point sources in a ripple tank radiate waves in phase with a constant wavelength of 0.02 meter. The first-order interference maximum appears at 6° (use $\sin 6^{\circ}=0.1$). The separation of the sources is most nearly.
8. Using $\tan \theta=\sin \theta$, derive the interference pattern equations.
