


C. Bires, revised 4	/2012	Simulations at <u>http://phet.colorado.ed</u>	<u>u/</u>	Name:			
Energy (J)		Intro to Energy Potential and	Kinetic PhE	<u>T Lab</u>			
	Introduction: When Tony Hawk wants to launch himself as high as possible off the half-pipe, how						
does he achieve this? The skate park is an excellent example of the conservation of							
energy. The law of conservation of energy tells us that we can never create or destroy							÷
	energy, but we can change its form. In this lab, we will look at the conversion of energy						
betw	een gravitational- potentia	<i>l</i> energy, work, and <i>kinetic</i> (or n	moving) energ	gy.		/ Skate Park Basics	С
Use	the internet, your textbook	, or notes to define the following	g key terms:		ſ		
Kinetic Energy	I					🗹 Bar Graph	
Potential Energy						🗹 Pie Chart	
Mechanical Energy						🗹 Grid	
Joule						Ghu	
State, in your own words, the Law of the Conversation of Energy.						🗹 Speed	9
State, in your own words, the Law of the Conversation of Energy.						Skater Ma	iss
<u>Procedure:</u> PheT Simulations \rightarrow Play With Sims \rightarrow Physics \rightarrow Energy Skate Park: Basics Run Now!							Large
Take some time and play with the skater. Turn on the Bar Graph, Pie Chart, and Speed options.							
How does incr Kinetic Energy	easing skater's mass chang ?	e the skater's _Potential Energy?	7	Fotal Energy?			
How does the	skater's kinetic energy ch	ange as he moves down the ram	ıp?				
How does the skater's kinetic energy change as he moves up the ramp?							
How does the skater's potential energy change as he moves down the ramp?							
How does the skater's potential energy change as he moves up the ramp?							
How does the skater's total energy change as he moves down the ramp?							
How does the	skater's total energy chan	ge as he moves up the ramp?					
Describe the skater's kinetic energy at the bottom of the ramp.							
Describe the skater's potential energy at the bottom of the ramp.							
What happens	when the skater is dropped	l onto the ramp from above the 1	ramp?				

Observe the following situations. Draw the possible bar graphs for the situation shown. Compare your results with a nearby lab group, AFTER you have completed this section.

Draw where the skater might be based on the bar graphs shown. Compare your results with a nearby lab group, AFTER you have completed this section.

<u>Conclusion Questions:</u> (circle the correct answers)

- 1. At the highest point kinetic energy is zero / maximum while the potential energy is zero / maximum.
- 2. At the lowest point kinetic energy is zero / maximum while potential energy is zero / maximum.
- 3. Mass *affects / does not affect* the amount of energy.
- 4. As an object falls in gravity, kinetic energy increases / decreases / remains the same.
- 5. As an object falls in gravity, potential energy increases / decreases / remains the same.
- 6. As an object falls in gravity, total energy *increases / decreases / remains the same*.
- 7. An object travelling faster and faster has a kinetic energy that *increases / decreases / remains the same*.
- 8. An object travelling faster and faster has a potential energy that *increases / decreases / remains the same*.
- 9. As an object speeds up, the total energy increases / decreases / remains the same.

10. As an object slows down, the total energy increases / decreases / remains the same.