ID: \qquad Name: \qquad

You have been hired as an automotive engineer to gather information about two braking systems, ABS and Non-ABS. The vehicle used to test the systems has an overall mass of \qquad kg. The initial velocity from which the vehicle will begin braking is \qquad m / s. The static coefficient of friction (i.e. ABS System) between the tire and road is \qquad . The kinetic coefficient of friction (i.e. Non-ABS System) between the tire and road is \qquad . Carry the decimal to the hundredths place. $g=-10$

1. Draw a qualitative force diagram for the vehicle during braking:
2. Calculate the force gravity magnitude on the vehicle: \qquad N
3. Calculate the force normal magnitude on the vehicle: \qquad N
4.

a. Calculate the static force friction magnitude (i.e. $A B S$): \qquad N
b. Calculate the kinetic force friction magnitude (i.e. Non-ABS): \qquad N
5. A. What is the acceleration magnitude of the vehicle with $A B S$? \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$
B. What is the acceleration magnitude of the vehicle with Non-ABS? \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$
6. a. Calculate the time to come to a stop using ABS: \qquad seconds
b. Calculate the time to come to a stop using Non-ABS: \qquad seconds
7.
a. Calculate the distance required to stop with ABS : \qquad meters
b. Calculate the distance required to stop with Non-ABS: \qquad meters

