Cheetah and Antelope Individual Activity

Name: \qquad ID: \qquad

Objective: Determine the time and position at which a fast animal (e.g. cheetah) will overtake a slow animal (e.g. antelope) when the slow animal begins a distance ahead of the fast animal. Assume both animals travel in the same direction and linear dimension.

You will be assigned the following values:
\qquad
$x_{i, \text { antelope }}=$ \qquad m $\quad x_{i, \text { cheetah }}=$ \qquad m

First you will create two constant velocity equations $x_{f}=\bar{v} t+x_{i}$, one for each animal. \bar{v} and x_{i} are given quantities and will differ within the two equations. x_{f} and t are unknown quantities and will remain represented as variables until you solve for them.
x_{f} denotes final position; x_{i} denotes initial position; t represents the elapsed time from when the cars begin to move until colliding head on. Fill in the blanks below.

Antelope
$x_{f}=\bar{v} t+x_{i}$
$x_{f, \text { slow }}=\bar{v}_{\text {slow }} t+x_{i, \text { slow }}$
$x_{f, \text { slow }}=\ldots \quad t+\ldots$

Cheetah

$$
\begin{aligned}
& x_{f}=\bar{v} t+x_{i} \\
& x_{f, f a s t}=\bar{v}_{f a s t} t+x_{i, f a s t} \\
& x_{f, f a s t}=
\end{aligned}
$$

Since x_{f} will be the same in both equations, you can set expressions equal to one another and then solve for time. Carry decimals to the hundredths place.

$$
\begin{aligned}
x_{f, \text { slow }} & =x_{f, f a s t} \\
\bar{v}_{\text {slow }} t+x_{i, \text { slow }} & =\bar{v}_{\text {fast }} t+x_{i, f a s t} \\
t+\ldots & =-
\end{aligned}
$$

$$
t=
$$

\qquad seconds

Once you have solved for t using the correct steps, you can choose either the slow or fast animal original constant velocity equation in order to solve for x_{f} which is the position at which the cheetah reaches the antelope. For practice and to verify your answer, use both original constant velocity equations to find x_{f}.

$$
\begin{array}{ll}
x_{f, \text { slow }}=\bar{v}_{\text {slow }} t+x_{i, \text { slow }} & x_{f, \text { fast }}=\bar{v}_{\text {fast }} t+x_{i, \text { fast }} \\
x_{f, \text { slow }}=_\quad t+\ldots & x_{f, \text { fast }}=\ldots \quad t+\ldots
\end{array}
$$

$$
x_{f, \text { slow }}=
$$

\qquad meters

$$
x_{f, f a s t}=\ldots \text { meters }
$$

Verify your time and final position numbers with the instructor.
On the grid lines provided below, sketch the $x-t$ and $v-t$ graphs of each animal. Remember that the average velocity \bar{v} is the slope and can either be positive or negative; x_{i} is the y-intercept.

Position

Velocity

Time

