The Conical Pendulum

The drawing at the right represents a toy airplane moving in a horizontal circle at constant speed, i.e., it is moving with uniform circular motion. The airplane is suspended from a string that sweeps out a cone as the plane flies around. A system moving in this fashion is called a <u>conical pendulum</u>.

In this lab Newton's laws will be applied to the conical pendulum to determine the period of rotation of the airplane, its speed, acceleration, and the tension in the support string.

<u>DATA</u>

Measure the following quantities.

The mass of the airplane: $M = _$ The period of rotation of the airplane: $T_m = _$

As illustrated in the drawing above:

Knowing L and R, determine θ : θ = _____

<u>ANALYSIS</u>

- 1. Draw the free-body diagram showing all the forces on the airplane. Let F_s represent the tension in the string so that it isn't mistaken for the period of rotation, T, of the airplane. Label θ in the diagram and indicate an appropriate coordinate system.
- 2. Apply Newton's second law and show that the period T, of the airplane is given by $T = 2\pi \sqrt{R/(g \tan \theta)}$.

L = _____

R = _____

$$\sum F_x = Ma_x$$
 $\sum F_y = Ma_y$

3. Using the equation for the period of rotation derived in #2, calculate the period, T_c , of the airplane and the per cent difference between T_c and the measured value of the period, T_m .

 $T_c =$ $T_m =$ % difference = ____

4. Using the expression for $\sum F_y = Ma_y$ from #2, calculate the tension, F_s , in the support string.

F_s = _____

5. Write the expression for the force or forces responsible for the centripetal force on the airplane (hint: see #2), substitute in the appropriate quantities, and calculate the magnitude of the centripetal force. (Do NOT use $F_c = Ma_c$ for this part.) Expression before substitution: $F_c =$ _____

F_c = _____

6. Use the measured values of the radius (R) and period (T_m) to calculate the speed (v) of the airplane and its centripetal acceleration (a_c).

Calculation of v

Calculation of a_c

v = _____

a_c = _____