District Perf. Task Review

(!) This is a preview of the published version of the quiz

Started: Oct 15 at $2: 11 \mathrm{pm}$

Quiz Instructions

Scenario:
A toy car is released from rest at the top of a ramp.
Question 1
A toy car is released from rest at the top of a very long ramp. The car experiences a constant acceleration as it
travels. After rolling down the ramp for a distance of 96 meters the car reaches a final speed of $64 \mathrm{~m} / \mathrm{s}$. How much
time passed?
Hint: Find the average velocity.
.

Question 2

Choose the hypothesis that matches the following procedure:

A toy car is released from rest at the top of a ramp. Collect distance and time data using a meter stick and stopwatch. Square the times. Create a distance-time squared graph with distance on the y-axis and time squared on the x-axis. If the shape of the scatter plot has a linear pattern, this hypothesis is supported.Distance traveled is directly proportional to time ${ }^{\wedge} 2$.The slope of the velocity-time graph is acceleration.The slope of the distance-time graph is velocity.The area under the velocity-time is equivalent to displacement.None of these

Question 3

Choose the hypothesis that matches the following procedure:
A toy car is released from rest at the top of a ramp. Collect distance and time data using a meter stick and stopwatch. Determine the acceleration of the car using a kinematic equation. Then using a 'speed detector' measure the instantaneous velocity of the car at specific times. Create a velocity-time graph. Find the slope of the velocity-time graph and compare it to the acceleration you calculated previously. If the slope of the velocity-time graph is the same as the acceleration, this hypothesis is supported.None of theseThe slope of the velocity-time graph is acceleration.The slope of the position-time graph is velocity.The area under the velocity-time is equivalent to displacement.Distance traveled is directly proportional to time^2.

Question 4

A toy car is released from rest at the top of a ramp. Which of the following variables should you control (i.e. not vary) when collecting data?
distanceramp incline angle

- velocitytime

Question 5

A toy car is released from rest at the top of a ramp. Which of the following variables should you control (i.e. not vary) when collecting data?initial velocitydistance

```
time
instantaneous velocity
```


Question 6

A physics word that means two numeric variables create a straight line relationship when graphed with one another.

- linear
proportionainversely proportionalaccelerationinstantaneousconcurrent

Question 7

For an object rolling down an inclined plane, acceleration is \qquad .
decreasing
O increasing

Question 8

For an object rolling down an inclined plane, velocity is \qquad -
increasing
decreasing
constant

Question 9

For an object rolling down an inclined plane, the slope of the velocity-time graph is \qquad .
acceleration
none of these
displacement

- distance
inertia

Question 10

For an object rolling down an inclined plane, the slope of the position-time graph is \qquad .
accelerationinertia
mass
velocitynet force

Question 11

Which item would NOT be useful when creating a procedure to test the following hypothesis for a toy car released from rest at the top of a ramp?

Hypothesis: Distance traveled is directly proportional to time squared.
ramp
car
springstopwatch

Question 12

Which item would NOT be useful when creating a procedure to test the following hypothesis for a toy car released from rest at the top of a ramp?

Hypothesis: The slope of the position-time graph is velocity.speed detector deviceelevatormeter stickstopwatchramp

Question 13

The District Performance Task will count as 10% of you semester grade.TrueFalse

Question 14

You may retake the District Performance Task if you do poorly.TrueFalse

Question 15

The District Performance Task will require you to write a hypothesis about an object rolling down a ramp and then to describe a procedure with which to test that hypothesis.TrueFalse

Question 16

Choose the hypothesis that matches the following procedural steps:

1. Prepare the ramp. With a meter stick measure and mark several distances on the ramp. Find the time required to reach those distances with a stopwatch. Organize your data in a table.
2. Create a position-time graph with the data from the table.
3. Find the slope of the position-time graph at $1,2,3$, and 4 seconds. The slope of a tangent line touching the curved position-time graph at the specific times will provide the slopes of the position-time graph. The slope should be increasing as time increases.
4. Using a 'speed detector device' measure the instantaneous velocities of the car at times $1,2,3$, and 4 seconds.
5. Compare the slopes from the position-time graph with the velocities you measured with the 'speed detector'. If the velocities from the speed detector are the same as the slopes from the position-time graph, the hypothesis is supported.The slope of the velocity-time graph is acceleration.The slope of the position-time graph is velocity.The area under the velocity-time is equivalent to displacement.Distance traveled is directly proportional to time squared.

Question 17

If you write a number as an answer on the District Performance Task, you must include a unit or you will lose points.
For example, when providing the acceleration write ' $3 \mathrm{~cm} / \mathrm{s} / \mathrm{s}$ ' instead of just ' 3 '.

- True
Question 18
cm / s and m / s are both units of velocity.
- True

False

Question 19

$30 \mathrm{~cm} / \mathrm{s}=3 \mathrm{~m} / \mathrm{s}$TrueFalse

Question 20

1 pts

When the position-time graph shows an increasing rate, there is an acceleration.TrueFalse

Question 21

If the position-time graph shows an increasing rate, you can claim that a corresponding velocity-time graph will be flat with zero slope.TrueFalse

Question 22

It is appropriate to list 'human error' as a source of potential error during an experiment.TrueFalse

A source of error during the Hot Wheels Kinematics Lab is not accurately measuring the time traveled by the car for each distance.

- TrueFalse

Question 24

If the position-time graph shows an increasing rate, you can claim that a corresponding velocity-time graph will be a diagonal, non-zero slope line.TrueFalse

Question 25

A source of error during a kinematics lab may be not accurately measuring velocity of the car accurately after it has traveled a specific distance.TrueFalse

