4. An ideal fluid flows through a long horizontal circular pipe. In one region of the pipe, it has radius R. The pipe then widens to radius 2 R . What is the ratio of the fluids speed in the region of radius R to the speed of the fluid in region with radius 2 R
A) $1 / 4$
B) $1 / 2$
C) 1
D) 2
E) 4
5. A hydraulic press allows large masses to be lifted with small forces as a result of which principle?
A) Pascal's
B) Bernoulli's
C) Archimedes'
D) Huygens'
E) Newton's

Questions 27-28: Refer to the diagram below and use $10 \mathrm{~m} / \mathrm{s}^{2}$ for g and $100,000 \mathrm{~N} / \mathrm{m}^{2}$ for 1 atm .

27. The pressure at A is 9.5 atm and the water velocity is $10 \mathrm{~m} / \mathrm{s}$. What is the water velocity at point C?
(a) $2.5 \mathrm{~m} / \mathrm{s}$
(b) $5 \mathrm{~m} / \mathrm{s}$
(c) $10 \mathrm{~m} / \mathrm{s}$
(d) $20 \mathrm{~m} / \mathrm{s}$
(e) $40 \mathrm{~m} / \mathrm{s}$
28. The pressure at C is
(a) $0 \mathrm{~N} / \mathrm{m}^{2}$
(b) $100,000 \mathrm{~N} / \mathrm{m}^{2}$
(c) $150,000 \mathrm{~N} / \mathrm{m}^{2}$
(d) $800,000 \mathrm{~N} / \mathrm{m}^{2}$
(e) $1,100,000 \mathrm{~N} / \mathrm{m}^{2}$
33. The idea that the velocity of a fluid is high when pressure is low and that the velocity of a fluid is low when the pressure is high embodies a principle attributed to
(a) Torricelli
(b) Pascal
(c) Galileo
(d) Archimedes
(e) Bernoulli
39. The buoyant force on an object is equal to the weight of the water displaced by a submerged object. This is a principle attributed to
(a) Torricelli
(b) Pascal
(c) Galileo
(d) Archimedes
(e) Bernoulli
42. A river gradually deepens, from a depth of 4 m to a depth of 8 m as shown. The width, W, of the river does not change. At the depth of 4 m , the river's speed is 12 $\mathrm{m} / \mathrm{sec}$. Its velocity at the 8 m depth is

(a) $12 \mathrm{~m} / \mathrm{sec}$
(b) $24 \mathrm{~m} / \mathrm{sec}$
(c) $6 \mathrm{~m} / \mathrm{sec}$
(d) $8 \mathrm{~m} / \mathrm{sec}$
(e) $16 \mathrm{~m} / \mathrm{sec}$

1. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?

A) I
B) II
C) III
D) IV
E) all section have the same pressure.
2. A 500 N weight sits on the small piston of a hydraulic machine. The small piston has an area of $2 \mathrm{~cm}^{2}$. If the large piston has an area of $40 \mathrm{~cm}^{2}$, how much weight can the large piston support?
A) 25 N
B) 500 N
C) 10000 N
D) 40000 N
3. Liquid flows through a 4 cm diameter pipe at $1.0 \mathrm{~m} / \mathrm{s}$. There is a 2 cm diameter restriction in the line. What is the velocity in this restriction?
A) $0.25 \mathrm{~m} / \mathrm{s}$
B) $0.50 \mathrm{~m} / \mathrm{s}$
C) $2 \mathrm{~m} / \mathrm{s}$
D) $4 \mathrm{~m} / \mathrm{s}$
4. Water flows in a pipe of uniform cross-sectional area A.

The pipe changes height from $\mathrm{y}_{1}=2$ meters to $\mathrm{y}_{2}=3$ meters. Since the areas are the same, we can say $\mathrm{v}_{1}=\mathrm{v}_{2}$. Which of the following is true?
(a) $P_{1}=P_{2}+\rho g\left(y_{2}-y_{1}\right)$
(b) $\mathrm{P}_{1}=\mathrm{P}_{2}$
(c) $\mathrm{P}_{1}=0$
(d) $\mathrm{P}_{2}=0$
(e) $\rho_{1}>\rho_{2}$
10. Water flows through the pipe shown. At the larger end, the pipe has diameter D and the speed of the water is v_{1}.

What is the speed of the water at the smaller end, where the pipe has diameter d ?
(A) v_{1}
(B) $\frac{d}{D} v_{1}$
(C) $\frac{D}{d} v_{1}$
(D) $\frac{d^{2}}{D^{2}} v_{1}$
(E) $\frac{D^{2}}{d^{2}} v_{1}$

2007B4.

The large container shown in the cross section is filled with a liquid of density $1.1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. A small
hole of area $2.5 \times 10^{-6} \mathrm{~m}^{2}$ is opened in the side of the container a distance h below the liquid surface, which
allows a stream of liquid to flow through the hole and into a beaker placed to the right of the container. At the
same time, liquid is also added to the container at an appropriate rate so that h remains constant. The amount of
liquid collected in the beaker in 2.0 minutes is $7.2 \times 10^{-4} \mathrm{~m}^{3}$.
(a) Calculate the volume rate of flow of liquid from the hole in m 3 s .
(b) Calculate the speed of the liquid as it exits from the hole.
(c) Calculate the height h of liquid needed above the hole to cause the speed you determined in part (b).
(d) Suppose that there is now less liquid in the container so that the height h is reduced to $h / 2$. In relation to the
collection beaker, where will the liquid hit the tabletop?
\qquad Left of the beaker \qquad In the beaker \qquad Right of the beaker
Justify your answer.

2008B4.

A drinking fountain projects water at an initial angle of 50° above the horizontal, and the water reaches a maximum height of 0.150 m above the point of exit. Assume air resistance is negligible.
(a) Calculate the speed at which the water leaves the fountain.
(b) The radius of the fountain's exit hole is $4.00 \times 10^{-3} \mathrm{~m}$. Calculate the volume rate of flow of the water.
(c) The fountain is fed by a pipe that at one point has a radius of $7.00 \times 10^{-3} \mathrm{~m}$ and is 3.00 m below the fountain's opening. The density of water is $1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Calculate the gauge pressure in the feeder pipe at this point.

B2008B4.

A fountain with an opening of radius 0.015 m shoots a stream of water vertically from ground level at $6.0 \mathrm{~m} / \mathrm{s}$.
The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(a) Calculate the volume rate of flow of water.
(b) The fountain is fed by a pipe that at one point has a radius of 0.025 m and is 2.5 m below the fountain's opening. Calculate the absolute pressure in the pipe at this point.
(c) The fountain owner wants to launch the water 4.0 m into the air with the same volume flow rate. A nozzle
can be attached to change the size of the opening. Calculate the radius needed on this new nozzle.

