Electrostatics fields WS 5

- 1. An electric field of 260,000 N/C points due west at a certain spot. What are the magnitude and direction of the force that acts on a charge of $-7.0 \ \mu$ C at this spot?
- 2. A tiny ball (mass = 0.012 kg) carries a charge of -18 μ C. What electric field (magnitude and direction) is needed to cause the ball to float above the ground? (Draw a force diagram!)
- 3. At a distance r_1 from a point charge, the magnitude of the electric field created by the charge is 248 N/C. At a distance r_2 from the charge, the field has a magnitude of 132 N/C. Find the ratio r_2/r_1 .
- 4. Two charges are placed on the x axis. One charge $(q_1 = +8.5 \ \mu C)$ is at $x_1 = +3.0 \ cm$ and the other $(q_2 = -21 \ \mu C)$ is at $x_2 = +9.0 \ cm$. Find the net electric field (magnitude and direction) at (a) $x = 0 \ cm$ and (b) $x = 6.0 \ cm$.

5. Two charges, $-16 \mu C$ and $+4.0 \mu C$, are fixed in place on a number line. The negative charge is at the origin, and the positive charge is on at +3.0 m. (a) At what spot on the line through the charges is the net electric field zero? (*Hint: the spot does not necessarily lie between the two charges.*) (b) What would be the force on a charge of $+14 \mu C$ placed at this spot?

6. A 3.0 μ C point charge is placed in an external uniform electric field of 1.6 x 10⁴ N/C directed towards the top of the page. Where relative to the charge is the net electric field zero?

7. A small drop of water is suspended motionless in air by a uniform electric field that is directed upward and has a magnitude of 8480 N/C. The mass of the water drop is 3.50 x 10⁻⁹ kg. (a) Is the excess charge on the water drop positive or negative? Why? (b) How many excess electrons or protons reside on the drop?

8. Two charges are located on the x axis: $q_1 = +6.0 \ \mu C$ at $x_1 = +4.0 \ cm$, and $q_2 = +6.0 \ \mu C$ at $x_2 = -4.0 \ cm$. Two other charges are located on the y axis: $q_3 = +3.0 \ \mu C$ at $y_3 = 5.0 \ cm$, and $q_4 = -8.0 \ \mu C$ at $y_4 = +7.0 \ cm$. Find the net electric field (magnitude and direction) at the origin.

9. A small plastic ball of mass 6.50×10^{-3} kg and charge $+0.150 \mu$ C is suspended from an insulating thread and hangs between the plates of a capacitor (see diagram). The ball is in equilibrium, with the thread making an angle of 30.0° with respect to the vertical. The area of each plate is 0.0150 m^2 . What is the magnitude of the Electric Field between the plates?

