$\qquad$ Date: $\qquad$

## Electrostatics fields WS 5

1. An electric field of $260,000 \mathrm{~N} / \mathrm{C}$ points due west at a certain spot. What are the magnitude and direction of the force that acts on a charge of $-7.0 \mu \mathrm{C}$ at this spot?
2. A tiny ball (mass $=0.012 \mathrm{~kg}$ ) carries a charge of $-18 \mu \mathrm{C}$. What electric field (magnitude and direction) is needed to cause the ball to float above the ground? (Draw a force diagram!)
3. At a distance $r_{1}$ from a point charge, the magnitude of the electric field created by the charge is $248 \mathrm{~N} / \mathrm{C}$. At a distance $\mathrm{r}_{2}$ from the charge, the field has a magnitude of 132 $N / C$. Find the ratio $r_{2} / r_{1}$.
4. Two charges are placed on the x axis. One charge $\left(\mathrm{q}_{1}=+8.5 \mu \mathrm{C}\right)$ is at $\mathrm{x}_{1}=+3.0 \mathrm{~cm}$ and the other $\left(q_{2}=-21 \mu \mathrm{C}\right)$ is at $\mathrm{x}_{2}=+9.0 \mathrm{~cm}$. Find the net electric field (magnitude and direction) at (a) $\mathrm{x}=0 \mathrm{~cm}$ and (b) $\mathrm{x}=6.0 \mathrm{~cm}$.
5. Two charges, $-16 \mu \mathrm{C}$ and $+4.0 \mu \mathrm{C}$, are fixed in place on a number line. The negative charge is at the origin, and the positive charge is on at +3.0 m . (a) At what spot on the line through the charges is the net electric field zero? (Hint: the spot does not necessarily lie between the two charges.) (b) What would be the force on a charge of $+14 \mu \mathrm{C}$ placed at this spot?
6. A $3.0 \mu \mathrm{C}$ point charge is placed in an external uniform electric field of $1.6 \times 10^{4} \mathrm{~N} / \mathrm{C}$ directed towards the top of the page. Where relative to the charge is the net electric field zero?
7. A small drop of water is suspended motionless in air by a uniform electric field that is directed upward and has a magnitude of 8480 N/C. The mass of the water drop is 3.50 x $10^{-9} \mathrm{~kg}$. (a) Is the excess charge on the water drop positive or negative? Why? (b) How many excess electrons or protons reside on the drop?
8. Two charges are located on the x axis: $\mathrm{q}_{1}=+6.0 \mu \mathrm{C}$ at $\mathrm{x}_{1}=+4.0 \mathrm{~cm}$, and $\mathrm{q}_{2}=+6.0 \mu \mathrm{C}$ at $x_{2}=-4.0 \mathrm{~cm}$. Two other charges are located on the y axis: $\mathrm{q}_{3}=+3.0 \mu \mathrm{C}$ at $\mathrm{y}_{3}=5.0 \mathrm{~cm}$, and $\mathrm{q}_{4}=-8.0 \mu \mathrm{C}$ at $\mathrm{y}_{4}=+7.0 \mathrm{~cm}$. Find the net electric field (magnitude and direction) at the origin.
9. A small plastic ball of mass $6.50 \times 10^{-3} \mathrm{~kg}$ and charge $+0.150 \mu \mathrm{C}$ is suspended from an insulating thread and hangs between the plates of a capacitor (see diagram). The ball is in equilibrium, with the thread making an angle of $30.0^{\circ}$ with respect to the vertical. The area of each plate is $0.0150 \mathrm{~m}^{2}$. What is the magnitude of the Electric Field between the plates?

