## E&M Unit II - Worksheet 5

1. Rank the parallel plate capacitors below from lowest capacitance to highest.



- A 10.0 μF parallel plate capacitor is charged with a 9.0-volt battery
  a. How much excess charge resides on each plate when the capacitor is fully charged?
  - b. How much energy is stored in the capacitor when it is fully charged?
  - c. How much work did the battery do during the charging cycle?
  - d. The capacitor is discharged and then charged with a 3-volt battery. What is the capacitance of the capacitor now?
- 3. A parallel plate capacitor of capacitance C has been charged with a battery of voltage V. The battery is then disconnected and the plates are then pulled apart using the insulated handles until they are separated by a distance of 1.0 cm.
  - a. By what factor has the capacitance of the capacitor been changed? Explain your reasoning.



Pd\_\_\_\_

Date

- b. By what factor has the potential difference between the two plates been changed? Explain your reasoning.
- c. By what factor has the energy stored in the capacitor been changed? Explain your reasoning.
- d. If the energy of the system differs from the initial conditions, explain how the energy was transferred into or out of the system.
- 4. A capacitor is charged with  $6.2 \times 10^{-4}$  joules of energy.
  - a. If there are 8.6x10<sup>-6</sup> coulombs of excess charge on each plate, what is the potential difference between the two plates?

b. What is the capacitance of the capacitor?