Name: \qquad

Elastic Energy Review Worksheet 4

1. A mass of .2 kg is hung from a spring and creates a length of .02 meters. The total length of the same spring with a mass of .7 kg hanging is .07 meters. Find the spring constant ' k '.
2. A mass of .2 kg is hung from a spring and creates a length of .02 meters. The total length of the same spring with a mass of .7 kg hanging is .07 meters. How much spring potential energy is stored in the spring when the mass being hung is .7 kg ?
3. A 1000 kg car rolling on a horizontal surface has a speed of $30 \mathrm{~m} / \mathrm{s}$ when it strikes a horizontal coiled spring and is brought to rest in a distance of 2 m . What is the spring constant of the spring? Ignore friction.
4. A dart of mass .2 kg is loaded .05 meters into a vertically coiled spring chamber and is then released. The spring constant is $800 \mathrm{~N} / \mathrm{m}$ and the spring has negligible mass. What is the dart's speed the moment the spring restores to its starting point?
5. A dart of mass .2 kg is loaded .05 meters into a vertically coiled spring chamber and is then released. The spring constant is $800 \mathrm{~N} / \mathrm{m}$ and the spring has negligible mass. What is the maximum height the dart reaches?

6. A 2 kg block is dropped from rest at point A. The spring constant is $\mathrm{k}=500 \mathrm{~N} / \mathrm{m}$. Assume no friction. What is the maximum compression of the spring?
7. A 2 kg block is dropped from rest at point A . The spring constant is $k=500 \mathrm{~N} / \mathrm{m}$. Assume that there is friction only between points C and B for a total of 1 meter and .15 is the coefficient of friction. What is the maximum compression of the spring? (Use $W=f^{*} d$)

EXTRA CREDIT

8. A 2 kg block is dropped from rest at point A. The spring constant is $k=500 \mathrm{~N} / \mathrm{m}$. Assume that there is friction only between points C and B for a total of 1 meter. The coefficient of friction is .15. Find the final position of the block in terms of the distance from point B.
