Net Force Particle Model: Elevator Lab

The elevator in the main building at John Burroughs School is not raised and lowered with cables. Instead, it rides on a giant piston that extends four stories into the ground. In today's activity you will look at how the forces change on you as you ride in the elevator.

Prep: Read the following questions **before** going over to the elevator, and note the observations you need to make:

1. At what times in the motion of the elevator does the bathroom scale show your weight (or the weight of the person standing on the scale)? Make a mental note of the scale reading.

2. At what times in the motion does the scale show a value **greater than** your weight? Make a mental note of the scale reading.

3. At what times in the motion does the scale show a value **less than** your weight? Make a mental note of the scale reading.

Experiment: Take the bathroom scales with you and take a ride in the elevator. Have someone stand on the bathroom scale that doesn't mind revealing his or her weight to others. Observe and remember the forces for numbers 1, 2 and 3 above.

Data/Observations: When you return to the classroom record your observations.

	Force in pounds	Force in Newtons (1 pound = 4.5 Newtons)
Scale reading at rest:		
Maximum scale reading:		
Minimum scale reading:		
Label the following as equal At rest at th Starting to g Going up at Slowing to g Stopped at t Starting to g Going dowr Slowing to g	to, greater than, or less than e bottom go up constant speed stop at the top the top go down n at constant speed. stop at the bottom.	the scale reading at rest.
Calculate the mass of the per	son on the scale in kilograms:	

Force Analysis: Draw a quantitative force diagram for the passenger in each of the following situations during the elevator ride. Label the forces in Newtons. To the right of each diagram draw a **velocity** and **acceleration** vector that describes the motion of person in the elevator. Calculate the net force and the acceleration of the person.

1. At rest at the bottom	2. Starting to go up
Quantitative force diagram	Quantitative force diagram
velocity vector:	velocity vector:
acceleration vector:	acceleration vector:
net force =	net force =
acceleration =	acceleration =
3. Going up at constant speed	4. Slowing to stop at the top
Quantitative force diagram	Quantitative force diagram
velocity vector:	velocity vector:
velocity vector: acceleration vector:	velocity vector: acceleration vector:
velocity vector: acceleration vector: net force =	velocity vector: acceleration vector: net force =
velocity vector: acceleration vector: net force = acceleration =	velocity vector: acceleration vector: net force = acceleration =

5. Stopped at the top	6. Starting to go down
Quantitative force diagram	Quantitative force diagram
velocity vector:	velocity vector:
acceleration vector:	acceleration vector:
net force =	net force =
acceleration =	acceleration =
7. Going down at constant speed.	8. Slowing to stop at the bottom.
velocity vector:	velocity vector:
acceleration vector:	acceleration vector:
net force =	net force =
acceleration =	acceleration =

9. How do the upward accelerations compare to the downward accelerations? Explain why.