Energy, Work and Power Quiz - Test Review

(!) This is a preview of the published version of the quiz

Started: Jan 24 at 8:45am

Quiz Instructions

$\mathrm{g}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
*The first four quiz questions reset after each attempt. The numbers will change, so complete all the questions before submitting.

Question 1

A car with mass 8.4 kg is at the top of a hill of height 1.5 meters and has initial velocity of $9.7 \mathrm{~m} / \mathrm{s}$. If there is no friction, what is the velocity of the car at the bottom of the hill? $\mathrm{g}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

Report your answer in m/s and to two decimal places.

Question 2

A car with mass 9 kg is at the top of a hill of height 8 meters and has initial velocity of 58 m / s. If the velocity of the car at the bottom of the hill is 5 , how many joules of energy became heat?
$\mathrm{g}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
Report your answer in Joules and to two decimal places.
\square

Question 3

A car with mass 2 kg is at the bottom of a hill of height 2 meters and has initial velocity of $69 \mathrm{~m} / \mathrm{s}$. If there is no friction, what is the velocity of the car at the top of the hill? $\mathrm{g}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

Report your answer in m/s and to two decimal places.
\square

Question 4

A car with mass 1 kg is at the bottom of a hill of height 4 meters and has initial velocity of $96 \mathrm{~m} / \mathrm{s}$. If there IS friction and the velocity of the car as it reaches the top of the hill is 4 m / s, how much energy was lost as heat at the time it reaches the hill top?
$\mathrm{g}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
Report your answer in Joules and to two decimal places.
\square

Question 5

Power is \qquad divided by time.
work
velocity
none of these
force
displacement

Question 6
1 pts

A student is able to lift a 50 kg mass above to a height of 1 meter in 10 seconds. How much power was generated in Watts?
\square

A machine runs for 90 seconds with a steady power output of 20 watts. How many joules of work does the machine produce in those 90 seconds?
\square

Question 8

A machine runs with a steady power output of 30 Watts producing 150 Joules of work. How long in seconds did the machine run?
\square

The area under the curve of a force v displacement graph is \qquad .
work
displacement
force

- time
none of these
acceleration
power
velocity

Question 10

The slope of a work v time graph is \qquad .
force
none of these
power
displacement

- joules
velocity

Question 11

1 Watt is equal to 1 \qquad per second.

Meter

Radian

JouleDegree

Newton

Question 12

A book moves across a table at a constant velocity of $15 \mathrm{~m} / \mathrm{s}$ with a constant push force of 6 Newtons. What is the power in Watts generated by the pushing force?

Hint: Power = Force*Velocity
\square

Question 13

A book moves across a table at a constant velocity of $15 \mathrm{~m} / \mathrm{s}$ with a constant push force of 6 Newtons. What is the power in Watts generated by the friction force?

Hint: Power = Force*Velocity
\square

Question 14

For an object in free fall, the shape of the kinetic energy v . time graph is
\qquad .

[^0]an inverted parabola
a horizontal line
a downward sloping line
a parabola

Question 15

For an object in free fall, the shape of the gravitational potential energy v. time graph is
\qquad .
a downward sloping linea horizontal line
an inverted parabola
an upward sloping linea parabola

Question 16

For an object in free fall, the shape of the total mechanical energy v. time graph is
\qquad .
an inverted parabola

- a parabola
a downward sloping line
an upward sloping line
a horizontal line

The shape of the 'elastic energy' v . 'change in length' graph for a spring that is being elongated is a \qquad .
a downward sloping line
a parabola
an inverted parabola
an upward sloping line

Question 18

For an ideal pendulum, the shape of the total mechanical energy v. time graph is a
\qquad .

- a parabolaa downward sloping line
an upward sloping line
an inverted parabola
a horizontal line

Question 19

A crate is pushed at a constant speed across the floor. What is the shape of its 'total mechanical energy' v. time graph?
an inverted parabola
a horizontal line
a parabola
an upward sloping line
a downward sloping line

Question 20

What is the graph shape for kinetic energy as a function of velocity?
an upward sloping line
a downward sloping line
an inverted parabola
a horizontal line
a parabola

Question 21

If a spring is initially stretched to a displacement of $X \mathrm{~m}$ and is later stretched to 3 X m , by what factor does the elastic energy in the spring change?
$\bigcirc 3$

- 1/9

If the velocity of a moving car quadruples, by what factor does its kinetic energy change?
2
1/3$1 / 2$1/16

4

1/4

16

Question 23

For an ideal pendulum, the kinetic energy is the least when \qquad .
it is at the bottom of its swing
it is at the top of its swing

Question 24

What is weight in Newtons of a hanging mass that stretches a spring with $\mathrm{k}=300 \mathrm{~N} / \mathrm{m}$ a distance .4 m ?
\square

What is the gravitation potential energy in Joules of a mass with weight 30 N if it is lifted 5 meters off the ground vertically?
\square

Question 26

What is the spring constant of a spring that is compressed .5 m with 12 Joules of energy?
\square

Question 27

By what factor is power output affected if the time to complete the same work is cut by $1 / 3$?
(1/9

○ 164
31/3
1/16

9

A student pushes a cart 4 meters with a force of 40 N toward the east and then pushes the same cart 5 meters with 60 N toward the north. What is the total amount of work in Joules done by the student on the cart?

Hint: Work is a scalar quantity.
\square

Question 29

A 30 Newtons block is at rest at the bottom of a ramp with hypotenuse length 10 m . The vertical displacement of the ramp is 6 meters and the horizontal displacement is 8 meters. How much work in Joules must be done against gravity to move the block to the top of the incline?
\square

Question 30

A 30 Newtons block is at rest at the bottom of a ramp with hypotenuse length 10 m . The vertical displacement of the ramp is 6 meters and the horizontal displacement is 8 meters. What is the average force in Newtons required to push the block up the hypotenuse of the ramp to the very top? Assume no friction.
\square

[^0]: an upward sloping line

