Final Review Practice A

(!) This is a preview of the draft version of the quiz

Started: Dec 16 at 10:09am

Quiz Instructions

This review is focused on the kinematic equations, but includes some Newton's laws and vector content.
$g=-10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
Type in negatives and positive values unless otherwise stated.

Question 1

1 pts

Newton's first law states that objects with higher masses are easier to accelerate.

True

False

Question 2

1 pts

An airplane accelerates down a runway at $3.20 \mathrm{~m} / \mathrm{s}^{2}$ for 32.8 s until is finally lifts off the ground. Determine the distance traveled before takeoff. do not include units or commas in your answer.
\square

Question 3

A car starts from rest and accelerates uniformly over a time of 5.21 seconds for a distance of 110 m . Determine the acceleration of the car.
do not include units or commas in your answer.
\square

A rock is thrown straight upward off the edge of a balcony that is 5 m above the ground. The rock rises 10 m , then falls all the way down to the ground below the balcony. What is the rock's displacement?
do not include units or commas in your answer.
\square

Question 5

1 pts

A car is moving with a velocity of $72 \mathrm{~km} / \mathrm{h}$. It's velocity is reduced to $36 \mathrm{~km} / \mathrm{h}$ after covering a distance of 200 m . Calculate its acceleration in m/s/s.
do not include units or commas in your answer.
\square

Question 6

How Much force must you exert in order to hold a 200 kg box over your head and keep it from moving? $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
do not include units or commas in your answer.
\square

Question 7
1 pts

A feather is dropped on the moon from a height of 1.40 meters. The acceleration of gravity on the moon is $1.67 \mathrm{~m} / \mathrm{s}^{2}$. Determine the time for the feather to fall to the surface of the moon.
do not include units or commas in your answer.
\square

Question 8

A bike accelerates uniformly from rest to a speed of $7.10 \mathrm{~m} / \mathrm{s}$ over a distance of 35.4 m . Determine the acceleration of the bike.
do not include units or commas in your answer.
\square

Question 9

A moving company needs to lift a 700 lb . (320 kg) piano to the top floor of an apartment building. They set up a rope and pulley system on the balcony of the upper story apartment, and pull the piano up. If the piano initially has an acceleration of $0.45 \mathrm{~m} / \mathbf{s}^{\mathbf{2}}$ (http://www.uwgb.edu/fenclh/problems/dynamics/1D/1/\#popup1)_, what is the tension in the rope (http://www.uwgb.edu/fenclh/problems/dynamics/1D/1/\#popup0)_during that period of time?
do not include units or commas in your answer.
\square

A 5 kg rock is dropped 80 meters from a cliff. How long does it take to reach the ground? $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
\square

Question 11

A 5 kg rock is dropped 80 meters from a cliff. What is the Force of Gravity acting on the rock?
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
\square

The Lamborghini Murcielago has a mass of $1,746 \mathrm{~kg}$ and can accelerate from 0 to 27.8 $\mathrm{m} / \mathrm{s}(100 \mathrm{~km} / \mathrm{hr}$ or $62.2 \mathrm{mi} / \mathrm{hr})$ in a time of 3.40 seconds. Determine the force used to reach these velocities.
\square

Question 13

Oscar, whose mass is 52 kg , experienced a net force of 1800 N at the bottom of a roller coaster loop during his school's physics field trip to the local amusement park. Determine Oscar's acceleration at this location.
\square

Question 14

A bag of groceries is on the back seat of your car as you stop for a stop light. The bag does not slide. Choose more than one.

Which of the following forces are acting on the bag?

Gravity

Normal

Spring
Tension

Friction

Question 15

Two children fight over a 200 g stuffed bear. The 25 kg boy pulls to the right with a 15 N force and the 20 kg girl pulls to the left with a 17 N force.

Ignore all other forces on the bear (such as its weight).

True or False

You can determine the velocity of the bear with the above information.

Question 16

Two children fight over a 200 g stuffed bear. The 25 kg boy pulls to the right with a 15 N force and the 20 kg girl pulls to the left with a 17 N force.

Ignore all other forces on the bear (such as its weight).
At this instant, you can say what the acceleration of the bear is.

False

Question 17

Two children fight over a 200 g stuffed bear. The 25 kg boy pulls to the right with a 15 N force and the 20 kg girl pulls to the left with a 17 N force. Ignore all other forces on the bear (such as its weight).

What direction is the acceleration?

Right
Left

Question 18

1 pts

The tension in T2 is congruent to the \qquad component vector of the tension in T1.horiztonalvertical
Question 19

The weight force of M is congruent to the \qquad component vector of the tension in T1.

- horizontal
vertical

Question 20

Between block 1 and the ramp, the coefficient of static friction is .3 . The coefficient of kinetic friction is . 2 .

How many forces are acting on block 1 ?

- 3

Between block 1 and the ramp, the coefficient of static friction is .3 . The coefficient of kinetic friction is .2.

How many forces are acting on block 2?
0
2

Assuming no friction, how many forces are acting on block 1 ?

3

4

Question 23

An object in free fall on planet earth travels a distance of 128 meters when it begins from rest. What is the time that passed during its fall? $\mathrm{g}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

Choose the closest answer

- 5

2

9

7

Question 24

An object accelerates horizontally from rest at $12 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ over a distance of 300 meters. How much time passed over the 300 meter distance? Choose the closest answer.
7

- 10

5

- 14

An object accelerates horizontally from rest at $3 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 20 seconds. How much distance was traveled? Choose the closest answer in meters.1200

6001500

2400

Not saved

