2D Newton's Laws Test - Review

(1) This is a preview of the draft version of the quiz

Started: Nov 8 at 12:27pm

Quiz Instructions

Question 1	1 pts
When two concurrent (aka simultaneous) forces of 6 and 10 Newtons act on an object, what is	s the maximum resultant?

Question 2	1 pts
When two concurrent (aka simultaneous) forces of 6 and 16 Newtons act on an object, what is the minimum re	esultant?

1 pts

When two concurrent (aka simultaneous) forces of 3 and 4 Newtons act on an object with an angle of 90 degrees	
between them, what is the magnitude of the resultant?	

Question 4	1 pts
The minimum resultant of two forces acting on an object will occur when the angle between the two vectors is degrees.	
O 45	
0	
180	
90	
120	
30	

Question 5	1 pts

The maximum resultant of two forces acting on an object will occur when the angle between the two vectors is ______degrees.

Question 6	1 pts
A resultant force of 10 Newtons is made up of two vector components acting at 90 degrees to one another. If the magnitude of one component is 8 Newtons, what is the magnitude of the other component?	

Question 7	1 pts
The equilibrant is the negative of the resultant.	

True			
False			

Question 8	1 pts
A 8 Newton vector pointed North is added to a 8 Newton vector pointed east, what is the direction of the resultant	!?
○ NE	
○ SE	
NW	
● SW	

Question 9	1 pts
A 6 Newton vector pointed North is added to a 6 Newton vector pointed east, what is the direction of the equilibr	rant?
○ SW	
○ NE	
○ SE	
○ NW	

Question 10	1 pts
A 6 Newton vector pointed North is added to a 6 Newton vector pointed east, what is the magnitude of the res	ultant?

Question 11	1 pts
It is possible for two vectors of magnitude 4 each to add to a resultant of 11.	
True	
 False 	

Question 12	1 pts
It is possible for two vectors of magnitude 4 each to add to a resultant of 6.	
○ True	

False

Question 13	1 pts
For objects on an inclined plane, equilibrium along the ramp is achieved when friction force is congr parallel component.	uent to the weight
True	
False	
Question 14	1 pts

For objects on an inclined plane, equilibrium perpendicular to the ramp is achieved when force normal is congruent to the weight perpendicular component.

True

False

Question 15

1 pts

An object sliding down an inclined plane at a constant velocity is not in equilibrium.		
O True		
○ False		

Question 16	1 pts
An object accelerating down an inclined plane at velocity is in equilibrium.	
True	
○ False	

Question 17	1 pts
Force normal is always pointed in the opposite direction of force gravity.	
○ True	
False	

Question 18	1 pts
Force normal is always pointed in the opposite direction of the perpendicular component of weightwhich is perpendicular to the ramp.	
True	
False	
Question 19	1 pts
The vertical component of a vector increases as the angle of the vector increases.	
*Assume the vector angle is bounded between 0 and 90 degrees.	
True	
 False 	

Question 20	1 pts
Displacement is 0 meters if an object ends at the same position at which it began.	
True	

Question 21	1 pts
For objects on an incline, the coefficient of friction depends on the angle of the ramp and not the material	s of the object.
True	
○ False	

Question 22	1 pts
Friction is equal to force normal multiplied by the coefficient of friction.	
True	
False	

Question 23	1 pts
Velocity is a vector and can be resolved (aka 'broken up') into two component vectors.	

○ True	
 False 	
Question 24	1 pts
The angle of the ramp is always equal to the angle between the weigh component vector.	t force vector and the perpendicular weight

○ True			
False			

vertical

Question 26	pts
$\vec{F_2}$ \vec	• F1
 the same 	
○ smaller	
○ larger	

\vec{F}_2 If F2 is smaller in magnitude than the horizontal component of F1, the block must be
slowing down.
 speeding up.
in equilibrium.
accelerating.

speeding up.			
) at rest.			
accelerating.			
) in equilibrium.			
slowing down.			

Question 29	1 pts
\vec{F}_2 θ	
If the force gravity of the block is smaller in magnitude than the vertical component of F1, the block must be in the vertical direction.	
→ at rest.	
 accelerating. 	

Question 33

1 pts

The tension in T2 is congruent to the component vector of the tension in T1.	
 horizontal 	
verticaal	

Question 34	1 pts

Question 35	1 pts
A 9 kg wood block is sliding across a horizontal wood floor with an applied 63 N push force. Between two wood surfaces the coefficient of static friction is .5 and the kinetic coefficient of friction is .3. What is the horizontal acceleration magnitude in m/s/s?	

Question	36
----------	----

1 pts

What is the coefficient of kinetic friction between a horizontal wood floor and a 40 kg metal block if a push force of 100 N is required to keep it sliding at a constant velocity?

Question 37	1 pts

The static coefficient of friction can be determined by dividing the maximum static friction by the force normal.

True

False

Question 38 1 pts

Wider tires allow for tires to be made of stickier but less ridged material.

○ True			
False			

1 pts

Question 40	1 pts
The coefficient of friction is only dependent upon the two materials that are in contact with one another.	
○ True	
 False 	