
Hot wheels Energy Lab 2

- i) The car is lifted by an <u>outside (external) force</u> from the ground to the top of the ramp (from A to B).
- ii) The car rolls down the ramp experiencing friction (from B to C).
- iii) The car experiences free fall with almost zero friction (from C to D).

Energy bar charts

From A to B

(let ground be y = 0)

$$K_{o}$$
 + U_{go} + U_{so} + $Work$ = K_{f} + U_{gf} + U_{sf} + Heat

From B to C (let the table top be y = 0)

$$K_o$$
 + U_{go} + U_{so} + $Work$ = K_f + U_{gf} + U_{sf} + Heat

From C to D (let ground be y = 0)

$$K_o$$
 + U_{go} + U_{so} + $Work$ = K_f + U_{gf} + U_{sf} + Heat

1. Find the velocity at point C (using projectile motion concepts). height of table:
air time:
forward distance (in air):
take off velocity: $v_C =$
2. B to C a) Knowing the velocity at C, find the KE at point C.
b) U_g at point $B = mgy =$ (Remember to measure y where the table top is $y = 0$)
c) Find the heat generated from point B to C.
3. C to D Find the speed of the car at point D. (Use the energy bar chart from C to D knowing the speed and altitude at point C. Heat = 0.)

• .

·