$v_{f}=\bar{a} t+v_{i}$
Introduction to Constant Acceleration Notes

1. What is acceleration?
2. What is the difference between a 'fast' car and a 'quick' car?
3. Can acceleration be negative? If so, how?
4. Can negative acceleration cause an object to speed up if it is already traveling at a negative velocity? If so, how?
5. Can a positive acceleration slow an object down if its initial velocity is negative? If so, how?
6. A car begins traveling at $9 \mathrm{~m} / \mathrm{s}$ and accelerates to $59 \mathrm{~m} / \mathrm{s}$ in 10 seconds. What was its acceleration in $\mathrm{m} / \mathrm{s} / \mathrm{s}$?
7. A car begins traveling at $-8 \mathrm{~m} / \mathrm{s}$ and accelerates at $-2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 10 seconds. What is its final velocity in m / s ?
8. A car can maximally accelerate during breaking at $-8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is the minimum time in seconds for the car to go from $90 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$?
9. A car begins traveling at $15 \mathrm{~m} / \mathrm{s}$ and accelerates at $-5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 10 seconds. What is its final velocity in m / s ?
