\qquad Date \qquad
\qquad

UNIT II Worksheet 1

1. Consider the position vs. time graph below for cyclists A and B.

a. Do the cyclists start at the same point? How do you know? If not, which is ahead?
b. At $\mathrm{t}=7 \mathrm{~s}$, which cyclist is ahead? How do you know?
c. Which cyclist is travelling faster at $\mathrm{t}=3 \mathrm{~s}$? How do you know?
d. Are their velocities equal at any time? How do you know?
e. What is happening at the intersection of lines A and B?
2. To rank the following, you may need to look at the key ideas sheet for the difference between displacement and odometer reading.

a. Rank the graphs according to which show the greatest displacement from the beginning to the end of the motion.

Most positive $\rightarrow 1$ \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad \leftarrow Most negative Explain your reasoning for your ranking:
b. Rank the graphs according to which show the greatest odometer reading from the beginning to the end of the motion.

Greatest 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad Least

Explain your reasoning for your ranking:

Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

4. The object is moving in the positive direction at a constant (steady) speed.		
5. The object is standing still.		$\overrightarrow{\text { time }}$
6. The object moves in the negative direction at a steady speed for 10 s, then stands still for 10 s.		
7. The object moves in the positive direction at a steady speed for 10 s , reverses direction and moves back toward the negative direction at the same speed.		$\underset{\text { time }}{\longrightarrow}$

Draw the velocity vs time graphs for an object whose motion produced the position vs time graphs shown below at left.
8.

9.

10.

11. For many graphs, both the slope of the line and the area between the line and the horizontal axis have physical meanings.
a. What does the slope of a position time graph tell you about the motion of an object? \qquad
b. What does the area under the velocity-time graph tell you about the motion of an object? \qquad

