\qquad Date \qquad Pd \qquad

UNIT II: Worksheet 2

1. Robin, roller skating down a marked sidewalk, was observed to be at the following positions at the times listed below:

$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$
0.0	10.0
1.0	12.0
2.0	14.0
5.0	20.0
8.0	26.0
10.0	30.0

a. Plot a position vs. time graph for the skater. Be sure to label the x and y axis.
b. Write a mathematical model to describe the curve in (a).
c. How far from the starting point was she at $\mathrm{t}=6 \mathrm{~s}$? How do you know?
d. Was her speed constant over the entire interval? How do you know?
2. The following data was obtained for a second trial:

$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$
0.0	4.0
2.0	10.0
4.0	16.0
6.0	22.0
8.0	28.0
10.0	34.0

a. Plot the position vs. time graph for the skater. Be sure to label the x and y axis.
b. How far from the starting point was she at $\mathrm{t}=5 \mathrm{~s}$? How do you know?
c. Was her speed constant? If so, what was it?
d. In the first trial the skater was further along at 2 s than she was in the second trial. Does this mean that she was going faster? Explain your answer.
3. Suppose now that our skater was observed in a third trial. The following data was obtained:

$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$
0.0	0.0
2.0	6.0
4.0	12.0
6.0	12.0
8.0	8.0
10.0	4.0
12.0	0.0

a. Plot the position vs. time graph for the skater. Be sure to label the x and y axis.
b. What do you think is happening during the time interval: $t=4 \mathrm{~s}$ to $\mathrm{t}=6 \mathrm{~s}$? How do you know?
c. What do you think is happening during the time interval: $t=6 \mathrm{~s}$ to $\mathrm{t}=12 \mathrm{~s}$? How do you know?
d. Determine the skater's average speed from $t=0 \mathrm{~s}$ to $\mathrm{t}=12 \mathrm{~s}$.
e. Determine the skater's average velocity from $\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=12 \mathrm{~s}$.
4. Rank the following:

a. Rank the graphs according to which show the greatest average velocity from the beginning to the end of the motion. (Zero is greater than negative, and ties are possible.)

Most pos. v 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad Most neg. v

Explain your reasoning for your ranking:
b. Rank the graphs according to which show the greatest average speed from the beginning to the end of the motion.

Greatest 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad Least

Explain your reasoning for your ranking:

