Loop De Loop \& Banked Turn Notes

1. An airplane makes a banked turn such that its wings tilt creating a 60 degree angle relative to the horizontal. The plane experiences a constant 7000 N lift force while it turns. What is the magnitude of centripetal force in Newtons on the plane?
2. A 59 kg pilot in a plane does a vertical loop de loop with radius 366 meters at a constant speed of $94 \mathrm{~m} / \mathrm{s} . \mathrm{g}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
a. What is the centripetal force magnitude in Newtons on the pilot while looping?
b. Draw a force diagram for the pilot at the top of the loop de loop.
c. What is the force normal magnitude in Newtons from the seat on the pilot at the top of the loop de loop?
d. Draw a force diagram for the pilot at the bottom of the loop de loop.
e. What is the force normal magnitude in Newtons from the seat on the pilot at the bottom of the loop de loop?
f. How many units of g-force does the pilot experience at the bottom of the loop de loop?
3. A curve on a race track has a radius of 79 meters and a banking angle of 25 degrees.
a. Draw a force diagram for a car on the banked track.
b. What is the ideal speed (the speed for which no friction is required between the car's tires and the surface) in m / s for a car of mass $1,489 \mathrm{~kg}$ to continue indefinitely on this curve? $\mathrm{g}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
4. A 0.075 kg toy airplane is tied to the ceiling with a string. When the airplane's motor is started, it moves with a constant speed of $4.47 \mathrm{~m} / \mathrm{s}$ in a horizontal circle of radius 1.28 m . a. Draw a force diagram for the toy airplane.
b. Find the angle the string makes with the vertical.
c. Find the tension in the string.
