Name $\qquad$

## Model for Projectile Motion

Date $\qquad$ Pd $\qquad$

We have discovered that projectiles have a constant downward acceleration (neglecting friction) and their vertical velocity changes by $-10 \mathrm{~m} / \mathrm{s}$ each second.

| time <br> $(\mathrm{s})$ | velocity <br> $(\mathrm{m} / \mathrm{s}$ | y-position <br> $(\mathrm{m})$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| 5 |  |  |

A stone was dropped from the top of a cliff. Fill in the values for the velocity for the first 5 seconds. Use the relationship $\Delta \mathrm{y}=1 / 2 \mathrm{at}^{2}$ to determine the y -position at these times.

Mark these positions on the $y$-axis below.
Use a scale of $1.0 \mathbf{~ c m}=\mathbf{1 0} \mathbf{~ m}$ for your drawing.
Suppose that you could "turn off" gravity. When you throw the ball horizontally from the cliff at $30 \mathrm{~m} / \mathrm{s}$ it would travel 30 m each second in a straight line. Mark these positions on the x -axis below.


The motion of the thrown ball has both horizontal and vertical components. At each second, draw a vertical line down from the horizontal position, then draw a horizontal line from the dropped ball position to determine the actual position of the stone. Sketch a smooth curve to describe the path of the projectile.

Determine the vertical distance the stone would fall $\qquad$ m. Use your drawing to estimate the following:

Time in the air: $\qquad$ s

Horizontal distance: $\qquad$ m

You will now build a physical model that can be used to show the projectile path for any angle. Suppose that you use the scale ( $1.0 \mathrm{~cm}=1.0 \mathrm{~m}$ ). Speed of throw is $20 \mathrm{~m} / \mathrm{s}$.


Use lengths of thin string to attach the washers to the meterstick.

The length of each string represents $\Delta y$.

Place a WB on the table and lift it up so that is vertical. Now put the meterstick directly next to the WB to represent a projectile thrown at different angles. Carefully mark the positions of the centers of the washers that show the $x$ and $y$ values of the projectile each second. Record the values into the data tables below. Finally, draw a smooth curve on the WB to show the path of the projectile in each situation.

1. Angle is $\mathbf{9 0}$ degrees from horizontal (straight up) at $\mathbf{2 0} \mathbf{~ m} / \mathrm{s}$.

Maximum height is $\qquad$ m

Time to reach max height is: $\qquad$ s

Total time in air is $\qquad$ s

| time (s) | $\mathbf{x}(\mathbf{m})$ | $\mathbf{y}(\mathbf{m})$ |
| :---: | :---: | :---: |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |

2. Angle is 30 degrees above horizontal at $20 \mathrm{~m} / \mathrm{s}$.

Maximum height is $\qquad$ m

Time to reach max height is $\qquad$ s

Total time in air is $\qquad$ s

Horizontal (x) distance $\qquad$ m

| time (s) | $\mathbf{x}(\mathbf{m})$ | $\mathbf{y}(\mathbf{m})$ |
| :---: | :---: | :---: |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |

3. Angle is $\mathbf{4 5}$ degrees above the horizontal at $\mathbf{2 0} \mathbf{~ m} / \mathrm{s}$.

Maximum height is $\qquad$ m

Time to reach max height is $\qquad$ s
Total time in air is $\qquad$ s

Horizontal (x) distance $\qquad$ m

| time (s) | $\mathbf{x}(\mathbf{m})$ | $\mathbf{y}(\mathbf{m})$ |
| :---: | :---: | :---: |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |

4. Angle is $\mathbf{6 0}$ degrees above the horizontal at $\mathbf{2 0} \mathbf{~ m} / \mathrm{s}$.

Maximum height is $\qquad$ m

Time to reach max height is $\qquad$ s

Total time in air is $\qquad$ s

Horizontal (x) distance $\qquad$ m

| time (s) | $\mathbf{x}(\mathbf{m})$ | $\mathbf{y}(\mathbf{m})$ |
| :---: | :---: | :---: |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |

