PhET Pendulum Lab - Pandemic Version

Purpose:
Determine the relationship between Gravitational Energy and Kinetic Energy when using a pendulum.
Instructions:
Simulation: Run http://phet.colorado.edu/en/simulation/pendulum-lab
Choose a fixed mass and length to keep throughout the experiment.
Choose no friction. Choose Earth. The pendulum bob has width .1 meters.
To determine the experimental velocity of the bob, choose $1 / 16$ time and use the stopwatch to measure the time it takes for the diameter of the pendulum bob to pass completely through the lowest point.

Fill in the blanks:
Mass of weight \qquad kg

Diameter of mass \qquad m

Solve for the velocities at the bottom of the swing for three different initial heights of your choice. Use conservation of energy principles.

Hint: $E_{g}=m g h \quad E_{k}=.5 m v^{2}$
(a) $h=$ \qquad m
(b) $h=$ \qquad (c) $\mathrm{h}=$ \qquad m

Record your solutions as 'theoretical velocity' in the data table below. The pendulum bob has width . 1 meters. To determine the 'experimental velocity' of the bob, choose $1 / 16$ time and use the stopwatch to measure the time it takes for the width of the pendulum bob to pass completely through the lowest point.

Condition	Height (m)	Experimental Velocity $(\mathrm{m} / \mathrm{s})$	Theoretical Velocity $(\mathrm{m} / \mathrm{s})$
1			
2			
3			

What are some reasons the theoretical and experimental velocities may differ?

Sketch the following qualitative graphs when the pendulum begins at the top of its swing:

