\qquad

Momentum and Simple 1D Collisions PhET Lab

Introduction: When objects move, they have momentum. Momentum, \mathbf{p}, is simply the product of an object's mass ($\mathbf{k g}$) and its velocity (m / s). The unit for momentum, p, is kgm/s. During a collision, an object's momentum can be transferred to impulse, which is the product of force (N) and time (s) over

Collision Lab which th $\Delta p=m \Delta v=F \Delta t$ us to write the momentum-impulse theorem:
Procedure: Play with the Sims \rightarrow Physics \rightarrow Motion \rightarrow

Collision Lab

Check your work in the simulation after you have completed the tables.

Important Formulas: $m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=p_{\text {total }}=m_{1} \vec{v}_{1}^{\prime}+m_{2} \vec{v}_{2}^{\prime} v_{12}^{\prime}=\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}}{m_{1}+m_{2}}$

- Take some time to familiarize yourself with the simulation and perfect collisions. Play. Investigate. Learn.
- Investigate the action of a more-massive attacking object striking a less-massive target object.
- What happens to the more-massive attacking object? \qquad
- What happens to the less-massive target object? \qquad
- Investigate the action of a less-massive attacking object striking a more-massive target object.
- What happens to the less-massive attacking object? \qquad
- What happens to the more-massive target object? \qquad
- Complete the below table without the simulation and check your work in the simulation.

$\mathbf{m}_{\mathbf{1}}$	$\mathbf{m}_{\mathbf{2}}$	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{p}_{\text {total }}$	$\mathbf{v}_{\mathbf{1}}{ }^{\prime}$	$\mathbf{V}_{\mathbf{2}}{ }^{\prime}$
1.20 kg	1.20 kg	$+1.50 \mathrm{~m} / \mathrm{s}$	$-1.80 \mathrm{~m} / \mathrm{s}$		$-1.80 \mathrm{~m} / \mathrm{s}$	
2.40 kg	4.80 kg	$+1.30 \mathrm{~m} / \mathrm{s}$	$0.0 \mathrm{~m} / \mathrm{s}$		$-.433 \mathrm{~m} / \mathrm{s}$	
2.50 kg	3.90 kg		$.850 \mathrm{~m} / \mathrm{s}$	11.5 $\mathrm{kgm} / \mathrm{s}$		$2.68 \mathrm{~m} / \mathrm{s}$
5.10 kg	1.00 kg	$0.900 \mathrm{~m} / \mathrm{s}$	$-4.60 \mathrm{~m} / \mathrm{s}$			$4.60 \mathrm{~m} / \mathrm{s}$

KE stands for Kinetic Energy $K E=1 / 2 m v^{2}$ and is measured in joules. Note that kinetic energy is not a vector quantity. Describe the effect of an inelastic collision on the total kinetic energy of a two-object system.
\qquad

- Take some time to familiarize yourself with 1D perfectly inelastic collisions. Play. Investigate. Learn.
- Contrast an inelastic collision with an elastic collision. \qquad
- Complete the below table without the simulation and check your work in the simulation.

$\mathbf{m}_{\mathbf{1}}$	$\mathbf{m}_{\mathbf{2}}$	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$	$\mathbf{p}_{\text {total }}$	$\mathbf{v}_{\mathbf{1 2}}{ }^{\prime}$
1.20 kg	1.20 kg	$+1.50 \mathrm{~m} / \mathrm{s}$	$-1.80 \mathrm{~m} / \mathrm{s}$		
2.40 kg	4.80 kg	$+1.30 \mathrm{~m} / \mathrm{s}$		7.00 $\mathrm{kgm} / \mathrm{s}$	
1.50 kg	5.50 kg	$+3.20 \mathrm{~m} / \mathrm{s}$	$+.800 \mathrm{~m} / \mathrm{s}$		
2.50 kg		$1.20 \mathrm{~m} / \mathrm{s}$	$3 \mathrm{~m} / \mathrm{s}$		$0.0 \mathrm{~m} / \mathrm{s}$

Describe the effect of an inelastic collision on the total kinetic energy of the two-object system.

Conclusion Questions:

1. A collision where both momentum and kinetic energy are conserved is perfectly elastic / inelastic collision.
2. A 500. gram cart moving at $.360 \mathrm{~m} / \mathrm{s}$ has how much momentum? (careful...units!)
3. If the above 500 . gram cart was to bounce back and return with a velocity of $-.240 \mathrm{~m} / \mathrm{s}$, what is its change in momentum?
4. How fast must a 250 . gram cart be traveling to have a momentum of $.450 \mathrm{kgm} / \mathrm{s}$? \qquad
5. A .230 kg baseball is thrown with a speed of $41 \mathrm{~m} / \mathrm{s}$. What is the ball's momentum?
6. Imagine you are ice skating with your BFF. Both of you at rest, when you shove him/her away from you. You have a mass of 65 kg and he/she has a mass of 55 kg . When you shove off, you move away with a velocity of $2.0 \mathrm{~m} / \mathrm{s}$. With what velocity does your BFF move away from you?
7. If a 250 . gram cart moving to the right with a velocity of $+.31 \mathrm{~m} / \mathrm{s}$ collides inelastically with a 500 . gram cart traveling to the left with a velocity of $-.22 \mathrm{~m} / \mathrm{s}$, what is the total momentum of the system before the collision? \qquad
8. What is the resulting velocity of the above two-car system (stuck together)?
9. A 9.0 kg bowling ball races down the lane at $15 \mathrm{~m} / \mathrm{s}$ before striking a bowling pin (at rest) with a mass of .85 kg . If the .85 kg pin bounces backward with a velocity of $45 \mathrm{~m} / \mathrm{s}$, what is the velocity of the bowling ball after the collision?
