Point Charges in Electrostatic Fields - PhET E-fields II

Purpose: Investigate the fields created by point charges when all other forces are ignored.
Apparatus: PhET Simulation Charges and Fields

Discussion: A point charge in space creates an electrostatic field, similar to a massive object creating a gravitational field. In fact, this similarity extends to the mathematical relationship between electrostatic force $F=k \frac{q_{1} q_{2}}{d^{2}}$

$F=G \frac{m_{1} m_{2}}{d^{2}}$. In this lab, familiarize yourself with how point charges create fields and how muliple fields, from multiple charges, interact.

It is worth noting that the field strength, E can be expressed in units of N / C and V / m.

Important Formulas:

Field Strength: $E=F / q$ and $E=V / d \quad$ Electrostatic Force: $F=k \frac{q_{1} q_{2}}{d^{2}} k=9.00 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$

Procedure and Analysis, part 1:

1. Open your PhET Simulations: Electricity, Magnets, and Circuits \rightarrow Charges and Fields

Run Now!
2. Place a single point charge in the work area and observe the field it creates with a test charge.
3. Draw the field lines (using convention, arrows) around a positive and (separately) a negative charge.

4. Draw the field lines around two nearby charges for each of the three pairs below.

5. Where, around a point charge, is the magnitude of the electrostatic force the greatest?
the least?
6. Where, around a point charge, is the magnitude of the electrostatic potential the greatest?
7. Using a single positive point charge +1.0 nC , complete the table below. Check your work in the simulation when possible.

Distance from charge, m	Field strength, V/m	Potential at location, V
2.1 m		
0.90 m		
		9.0 V
		26.4 V
	$1.1 \mathrm{~V} / \mathrm{m}$	
	$27.0 \mathrm{~V} / \mathrm{m}$	

Conclusion Questions and Calculations:

1. Closer to a point charge, the electrostatic field strength is stronger / weaker.
2. Placed exactly between two oppositely-charged point charges, a test charge (the sensor) will show zero / minimum / maximum force.
3. Placed exactly between two similar-charged point charges, a test charge (the sensor) will show zero / minimum / maximum force.
4. Placed exactly on a point charge, the sensor will show zero / minimum / maximum field strength.
5. A balloon is electrostatically charged with $1.4 \mu \mathrm{C}$ (microcoulombs) of charge. A second balloon 23 cm away is charged with $-2.1 \mu \mathrm{C}$ of charge. The force of attraction / repulsion between the two charges will be:
