\qquad

Date
 Central Net Force Particle Model: Circular Motion Problem Solving

\qquad Pd \qquad

When we did Newton's $2^{\text {nd }}$ law, we established: sum of forces $=$ net force $=m a$
Now, for circular motion: sum of radial forces $=$ centripetal force $=: \frac{m v^{2}}{r}$
Note that "Centripetal force" is just a fancy name for the net force. It is not a kind of interaction (like gravity or normal forces) and is NOT drawn on force diagrams.

EXAMPLES:

1. What frictional force is needed to keep a penny from sliding off a record rotating at $33^{1 / 3}$ revolutions per minute when it is placed 10 cm from the center of the record. (mass of penny $=2.5$ grams)

Net radial force $=\mathrm{F}_{\text {fric }}=\left(\mathrm{mv}^{2}\right) / \mathrm{r}=\left[(0.0025 \mathrm{~kg})(2 \pi 0.1 \mathrm{~m} / 1.8 \mathrm{sec})^{2}\right] / 0.1 \mathrm{~m}$
2. A ferris wheel with a 20 m radius and tangential speed of $4 \mathrm{~m} / \mathrm{s}$ has all 70 kg of you riding it. How big is the normal force exerted on you at a) the top \mathbf{b}) the bottom?
a) Top

b) Bottom $\quad \mathrm{F}_{\text {normal, you, }}$
$\mathrm{F}_{\text {grav, you, Earth }}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{g}}-\mathrm{F}_{\mathrm{N}}=\left(\mathrm{m} v^{2}\right) / \mathrm{r} \\
& \mathrm{~F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{g}}-\left(\mathrm{m} v^{2}\right) / \mathrm{r}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{N}}-\mathrm{F}_{\mathrm{g}}=\left(\mathrm{mv}^{2}\right) / \mathrm{r} \\
& \mathrm{~F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{g}}+\left(\mathrm{mv}^{2}\right) / \mathrm{r}
\end{aligned}
$$

