Name	
Name	

Pd

Central Net Force Particle Model: Circular Motion Problem Solving

When we did Newton's 2^{nd} law, we established: sum of forces = net force = ma

Now, for circular motion: sum of radial forces = centripetal force = $\frac{mv^2}{r}$

Note that "Centripetal force" is just a fancy name for the net force. It is not a kind of interaction (like gravity or normal forces) and is NOT drawn on force diagrams.

EXAMPLES:

1. What frictional force is needed to keep a penny from sliding off a record rotating at $33^{1/3}$ revolutions per minute when it is placed 10 cm from the center of the record. (mass of penny = 2.5 grams)

Net radial force = $F_{fric} = (mv^2)/r = [(0.0025kg)(2\pi 0.1 m / 1.8 sec)^2] / 0.1 m$

2. A ferris wheel with a 20 m radius and tangential speed of 4 m/s has all 70 kg of you riding it. How big is the normal force exerted on you at **a**) the top **b**) the bottom?

