Projectile Motion (Intro) PhET Simulations Lab

Introduction:

Projectiles travel with two components of motion, X any Y. The acceleration and velocity in the Y direction is independent of the acceleration (if any) and velocity in the X direction. In this module, you will investigate the motion of a simple projectile. Realize that while gravity (acceleration) acts on the projectile in the ______ direction, it does not affect the velocity of the projectile in the ______ direction.

Procedure:

(we will be ignoring air resistance during this lab)

- Run the PhET Simulations \rightarrow Play \rightarrow Motion \rightarrow Projectile Motion Run Now!
- The cannon can be moved to add or remove initial Y position and X position.
- The cannon can be pivoted to change the firing angle, θ .
- The tape measure can be moved and dragged to measure range to target.
- To fire the cannon, Fire
- To erase the projectile's path, **Erase**.

Be sure air resistance is off and spend some time firing various projectiles.

- Set the initial speed to a value between 10-15m/s. Choose your favorite projectile.
- Find the range of the projectile at various angles. $\theta = 30$ Range (dx) = ____ m $\theta = 70$ Range (dx) = ____ m $\theta = 40$ Range (dx) = ____ m $\theta = 80$ Range (dx) = ____ m $\theta = 50$ Range (dx) = ____ m $Add \text{ two} = Range (dx) = ____ m$ $\theta = 60$ Range (dx) = ____ m $\theta = Range (dx) = ____ m$
 - Measure the distance from the cannon to the target using the tape measure.
 - Move the target to 21.0 m from the cannon. Attempt to hit the target with three different angles by changing the firing angle and initial velocity.

VERY IMPORTANT

A projectile's velocity (v) has an X component (v_x) and a Y component (v_y). The X component (v_x) is found by multiplying the magnitude of the velocity by the *cosine* of the angle, θ .

Similarity, the Y component of velocity is found by multiplying the magnitude of the velocity by the *sine* of the angle, θ .

 $v_y = v \sin \theta$

 $v_x = v \cos \theta$

So, a projectile fired at **20 m/s** at **65°** has an X-velocity of $v_x = 20\cos 65$ or **8.5** m/s.

The projectile would have a Y-velocity of $v_y = 20 \sin 65$ or **18** m/s.

So, the projectile would fire <u>as far as one fired horizontally at 8.5 m/s</u> and <u>as high as one fired straight</u> <u>up at 18 m/s</u>.

A projectile fired at 30 degrees with a velocity of 15 m/s would have an x-velocity component of ______ m/s and a y-velocity component of ______ m/s.

Calculate the components of the following projectile's velocities:

- 1. $v = 35 \text{ m/s } \theta = 15^{\circ} v_x = ___ v_y = ___ v_y$
- We can reverse the process and combine the two components of velocity back into one velocity fired at an angle.
- ★ The magnitude of velocity is found using the Pythagorean Theorem with v_x and v_y as the legs of a right triangle. For instance, the velocity of a projectile with an x-component of 7.2 and a y-component of 4.8 is $\sqrt{7.2^2 + 4.8^2} = 8.7 \text{ m/s}$.
- ★ The angle above the horizontal is found using the inverse tangent (tan⁻¹) of the legs v_y/v_x . For instance, the angle of the projectile described above would be $tan^{-1}(\frac{4.8}{7.2}) = 34^{\circ}$.

Calculate the velocity magnitude and angle of the projectiles listed below:

 7. $v_x = 5.6 \ v_y = 6.4 \ v = ____ \ \theta = _____ \ \theta = ____ \ \theta = _$

Conclusion Questions:

- 1. Without air resistance, the piano travels further / the same distance as the football. (circle)
- 2. This is due to the fact that velocity in the X-direction *increases / is constant / decreases* as projectiles travel.
- 3. The Y-component of velocity increases / is constant / decreases as projectiles travel.
- 4. The answers to #2 and #3 are due to the fact that gravity acts *only in the Y / both the X any Y* direction.
- 5. The path of a projectile is a *linear curve / round curve / parabolic curve*.
- 6. This is due to the fact that the time component in the free fall equation (dy) is ______.
- 7. Without air resistance, maximum range of a projectile is obtained with an angle of ______.
- 8. The same range can be obtained with angles of ______ and _____.
- 10. A projectile with a horizontal component of 13 m/s and a vertical component of 18 m/s would have an overall velocity of ______ m/s at an angle of ______ above the horizontal.