$\qquad$

## Introduction:

Projectiles travel with two components of motion, X any Y . The acceleration and velocity in the Y direction is independent of the acceleration (if any) and velocity in the X direction. In this module, you will investigate the motion of a simple projectile. Realize that while gravity (acceleration) acts on the projectile in the $\qquad$ direction, it does not affect the velocity of the projectile in the $\qquad$ direction.


Projectile Motion

## Procedure:

(we will be ignoring air resistance during this lab)

- Run the PhET Simulations $\rightarrow$ Play $\rightarrow$ Motion $\rightarrow$ Projectile Motion Run Now!
- The cannon can be moved to add or remove initial Y position and X position.
- The cannon can be pivoted to change the firing angle, $\theta$.
- The tape measure can be moved and dragged to measure range to target.
- To fire the cannon, Fire.
- To erase the projectile's path, Erase

Be sure air resistance is off and spend some time firing various projectiles.

- Set the initial speed to a value between $10-15 \mathrm{~m} / \mathrm{s}$. Choose your favorite projectile.
- Find the range of the projectile at various angles.
$\theta=\_30 \_$Range $(\mathrm{dx})=\ldots \ldots \mathrm{m}$
$\theta=40 \quad$ Range $(\mathrm{dx})=\ldots \quad \mathrm{m}$

$\theta=\_60 \_$Range $(\mathrm{dx})=\ldots \quad \mathrm{m}$ $\qquad$
- Measure the distance from the cannon to the target using the tape measure.
- Move the target to 21.0 m from the cannon. Attempt to hit the target with three different angles by changing the firing angle and initial velocity.
Range $\left(\mathrm{d}_{\mathrm{x}}\right)=21.0 \mathrm{~m} \quad \theta=$ $\qquad$ $\mathrm{Vi}=$ $\qquad$
Range $\left(\mathrm{d}_{\mathrm{x}}\right)=21.0 \mathrm{~m}$
$\theta=$ $\qquad$ $\mathrm{Vi}=$ $\qquad$
Range $\left(\mathrm{d}_{\mathrm{x}}\right)=21.0 \mathrm{~m}$
$\theta=$ $\qquad$ $\mathrm{Vi}=$ $\qquad$



## VERY IMPORTANT

* A projectile's velocity (v) has an X component $\left(\mathrm{v}_{\mathrm{x}}\right)$ and a Y component
 $\left(\mathrm{v}_{\mathrm{y}}\right)$. The X component $\left(\mathrm{v}_{\mathrm{x}}\right)$ is found by multiplying the magnitude of the velocity by the cosine of the angle, $\theta$.
* Similarity, the Y component of velocity is found by multiplying the magnitude of the velocity by the sine of the angle, $\theta$.

$$
v_{y}=v \sin \theta
$$

So, a projectile fired at $\mathbf{2 0 ~ m} / \mathrm{s}$ at $\mathbf{6 5}^{\circ}$ has an X-velocity of $v_{x}=20 \cos 65$ or $\mathbf{8 . 5} \mathrm{m} / \mathrm{s}$.
The projectile would have a Y-velocity of $v_{y}=20 \sin 65$ or $18 \mathrm{~m} / \mathrm{s}$. So, the projectile would fire as far as one fired horizontally at $8.5 \mathrm{~m} / \mathrm{s}$ and as high as one fired straight up at $18 \mathrm{~m} / \mathrm{s}$.

A projectile fired at 30 degrees with a velocity of $15 \mathrm{~m} / \mathrm{s}$ would have an x -velocity component of $\mathrm{m} / \mathrm{s}$ and a y -velocity component of $\qquad$ $\mathrm{m} / \mathrm{s}$.

Calculate the components of the following projectile's velocities:

1. $\mathrm{v}=35 \mathrm{~m} / \mathrm{s} \theta=15^{\circ} \mathrm{v}_{\mathrm{x}}=\ldots \quad \mathrm{v}_{\mathrm{y}}=$
2. $\mathrm{v}=35 \mathrm{~m} / \mathrm{s} \theta=30^{\circ} \mathrm{v}_{\mathrm{x}}=\ldots \quad \mathrm{v}_{\mathrm{y}}=$
3. $\mathrm{v}=35 \mathrm{~m} / \mathrm{s} \quad \theta=60^{\circ} \mathrm{v}_{\mathrm{x}}=\quad \quad \mathrm{v}_{\mathrm{y}}=$ $\qquad$
4. $\mathrm{v}=35 \mathrm{~m} / \mathrm{s} \theta=45^{\circ} \mathrm{v}_{\mathrm{x}}=\ldots \quad \mathrm{v}_{\mathrm{y}}=$
$\qquad$
$\qquad$
5. $\mathrm{v}=35 \mathrm{~m} / \mathrm{s} \quad \theta=75^{\circ} \mathrm{v}_{\mathrm{x}}=$ $\qquad$ $v_{y}=$ $\qquad$
6. $\mathrm{v}=35 \mathrm{~m} / \mathrm{s} \quad \theta=90^{\circ} \mathrm{v}_{\mathrm{x}}=$ $\qquad$ $\mathrm{v}_{\mathrm{y}}=$ $\qquad$

* We can reverse the process and combine the two components of velocity back into one velocity fired at an angle.
* The magnitude of velocity is found using the Pythagorean Theorem with $v_{x}$ and $v_{y}$ as the legs of a right triangle. For instance, the velocity of a projectile with an $x$-component of 7.2 and a $y$-component of 4.8 is $\sqrt{7.2^{2}+4.8^{2}}=8.7 \mathrm{~m} / \mathrm{s}$.
* The angle above the horizontal is found using the inverse tangent $\left(\tan ^{-1}\right)$ of the legs $v_{y} / v_{x}$. For instance, the angle of the projectile described above would be $\tan ^{-1}\left(\frac{4.8}{7.2}\right)=34^{\circ}$.

Calculate the velocity magnitude and angle of the projectiles listed below:

$$
\text { 7. } v_{x}=5.6 \mathrm{v}_{\mathrm{y}}=6.4 \mathrm{v}=
$$

9. $\mathrm{v}_{\mathrm{x}}=8.1 \mathrm{v}_{\mathrm{y}}=-7.2 \quad \mathrm{v}=$ $\qquad$ $\theta=$ $\qquad$
10. $\mathrm{v}_{\mathrm{x}}=2.8 \mathrm{v}_{\mathrm{y}}=4.9 \mathrm{v}=$ $\qquad$ $\theta=$ $\qquad$ 10. $\mathrm{v}_{\mathrm{x}}=-1.3 \mathrm{v}_{\mathrm{y}}=-5.2 \mathrm{v}=\ldots \quad \theta=$ $\qquad$

## Conclusion Questions:

1. Without air resistance, the piano travels further / the same distance as the football. (circle)
2. This is due to the fact that velocity in the X-direction increases / is constant / decreases as projectiles travel.
3. The Y-component of velocity increases / is constant / decreases as projectiles travel.
4. The answers to \#2 and \#3 are due to the fact that gravity acts only in the $Y$ / both the $X$ any $Y$ direction.
5. The path of a projectile is a linear curve / round curve / parabolic curve.
6. This is due to the fact that the time component in the free fall equation (dy) is $\qquad$ .
7. Without air resistance, maximum range of a projectile is obtained with an angle of $\qquad$ .
8. The same range can be obtained with angles of $\qquad$ and $\qquad$ .
9. Firing a projectile at $25 \mathrm{~m} / \mathrm{s}$ at an angle of $35^{\circ}$ is similar to firing a projectile with a speed of
$\qquad$ straight up and $\qquad$ horizontally.
10. A projectile with a horizontal component of $13 \mathrm{~m} / \mathrm{s}$ and a vertical component of $18 \mathrm{~m} / \mathrm{s}$ would have an overall velocity of $\qquad$ $\mathrm{m} / \mathrm{s}$ at an angle of $\qquad$ above the horizontal.
