Electricity: Electric Force and Electric Fields

(!) This is a preview of the draft version of the quiz

Started: Nov 4 at 10:57am

Quiz Instructions

Abstract

Question 1

Two charges exert a force of 20 N on each other at a given distance. If the charges were moved closer together, what changes will be seen in the force they exert on each other?There is not enough information to make a prediction.The force will decrease.The force will increase.The force will not change.

Question 2

1 pts

What amount of force is felt by a 10 nC charge in an electric field where there strength is $25000 \mathrm{~N} / \mathrm{C}$?

```
O.5 N
```0.025 N0.00025 N2.5 N

\section*{Question 3}

Which of the following most accurately describes electric force and electric field strength?Electric force and electric field strength are both vector quantities, but direction only matters when discussing field strength.Electric force and electric field strength are both vector quantities, but direction only matters when discussing forces.Electric force and electric field strength are both scalar quantities so direction does not matter in discussion of either quantity.Electric force and electric field strength are both vector quantities so direction has to be considered when discussing these quantities.

\section*{Question 4}

The concept of a test charge is vitally important in the discussion of electricity, magnetism and electromagnetism. A test charge is a hypothetical charge taken to be much smaller than any other charge under discussion, and to be perfectly accurate, should be taken to be infintesimal. Which of the following reasons explains why a test charge needs to be so small?it is the closest to the original system that we can getconservation of charge requires that we not change the charge of the system being considereda small or infintesimal charge will have small or infintesimal effects on the systemconservation of energy requires that we minimally disturb the system

\section*{Question 5}

Two electrons are located 1 m apart. What is the magnitude of the force on one of them?
- \(2.31 \times 10^{\wedge}-28 \mathrm{~N}\)\(9.23 \times 10^{\wedge}-28 \mathrm{~N}\)\(3.88 \times 10^{\wedge}-26 \mathrm{~N}\)\(2.57 \times 10^{\wedge}-38 \mathrm{~N}\)

\section*{Question 6}

Two charged particles are initially separated by a distance \(d\) and the magnitude of the electric force on one is F 1 . If the distance is doubled, and the magnitude of the force on one of the particles is now F2, what is the ratio of F2/F1?
\(\square\)
.25
- 2

\section*{Question 7}

Examine the system of charges above. The charges are arranged at the points of an equilateral triangle. What is the net force on Q1?
0.63 N to the left0.63 N to the right0.315 N to the left0.315 N to the right

\section*{Question 8}

An isolated, hollow metal sphere is given a charge. Where is the electric field the strongest?along the inner surface of the sphereat the center of the spherealong the outer surface of the sphereat infinity

The electric field strength 1 m from a charge is \(4000 \mathrm{~N} / \mathrm{C}\). What is the strength of the field 2 m from the charge?

4000 N/C
\(8000 \mathrm{~N} / \mathrm{C}\)

2000 N/C
\(1000 \mathrm{~N} / \mathrm{C}\)

\section*{Question 10}

Two charges are positioned along the \(x\)-axis. A \(5.0 \mu \mathrm{C}\) charge is located at the origin and a \(-3.0 \mu \mathrm{C}\) is located at +1.0 m . At what point on the \(x\) axis is the net electric field zero
\(+4.44 \mathrm{~m}\)-0.52 m
\(+1.15 \mathrm{~m}\)+0.25 m

Four charges are arranged in a square with sides of length 0.25 m . All four charges have a magnitude of \(6.0 \mu \mathrm{C}\) and their type of charge is labeled on the diagram above. What is the magnitude of the electric field at the center of the square?
- \(1.72 \times 10^{\wedge} 6 \mathrm{~N} / \mathrm{C}\)
. \(2.44 \times 10^{\wedge} 6 \mathrm{~N} / \mathrm{C}\)
\(4.88 \times 10^{\wedge} 6 \mathrm{~N} / \mathrm{C}\)```

