Fluids Review Homework 2

(1) This is a preview of the draft version of the quiz

Started: Nov 4 at 9:28am

Quiz Instructions

Question 1	1 pts
What is the mass in kg of a spherical, solid iron wrecking ball of radius r=22.0 cm?	
386	
188	
350	
544	

Question 2	1 pts
You are originally 2.0 m below the surface of a pool. If you swim to 4.0 m below the surface, what will happen to the absolute pressure on you?	

 The absolute pressure quadruples. 	
The absolute pressure exactly doubles.	
The absolute pressure less than doubles.	
The absolute pressure more than doubles.	

Question 3	ots
What amount of pressure in Pa does a 75.0 kg man exert on the ground if the bottom of each of his shoes covers an area of 250 cm^2?	
14700	
16800	
12000	
13500	

Question 4	1 pts
If the man lifts one of his feet, what happens to the pressure he is exerting on the ground?	
A75.0kg man 's shoe covers an area of 250 cm^2	

The	e pressure will double.
The	e pressure will be divide in half.
The	e pressure will decrease, but not by half.
The	e pressure will not change.

Question 5	1 pts
A hydraulic car lift has a pump piston with radius R1 = 0.015 m and a resultant piston with radius R2 = 0.12 m. The combined weight of the car and the plunger is W = 2500 N. Assume that the height of the piston and plunger are same.	Гhe e the
How much force in N is required on the pump piston to keep the car in equilibrium?	
37	
35	
39	
O 41	

Question 6	1 pts
A clump of modeling dough has a specific gravity SG dough=1.21. What is its density in kg/m^3?	

610			
.610			
0 1210			
0 1.120			

Question 7	1 pts
A clump of modeling dough has a specific gravity SG dough=1.21.	
The dough will in water. The dough will in corn syrup (pcs=1400kg/m3).	
sink, float	
float, sink	
sink, sink	
 float, float 	

	Question 8	1 pts
	A cube of wood has a length of 6.50cm and a mass of 144g.	
	What is the density of the wood in kg/m^3?	
https://dvu	isd.instructure.com/courses/19549/quizzes/385492/take?preview=1	I

324			
524			
0 724			
0 1124			

Question 9	1 pts
A piece of metal is completely submerged at the bottom of a pail of water. Which of the following forces is NOT present?	
 weight 	
 normal force 	
 magnetism 	
 buoyant force 	

Question 10	1 pts
An upward force on an object that is applied by a fluid onto an object with which it is in contact is known as	
 the buoyant force. 	

the turbulent for	ce.		
the fluid force.			
 the tension force 	е.		

Question 11	1 pts
A fishing weight is sinking toward the bottom of a lake.	
As the fishing weight sinks deeper and deeper, the buoyant force on it	
○ decreases	
increases	
 remains constant 	

Question 12	1 pts
How many people with mass M person = 70 kg can a raft made of N logs cm and length L = 4 m support on salt water without sinking?	= 10 pine wood logs with diameter D = 25
0 12	

0 13			
0 16			
0 14			

Question 13	1 pts
Sunnose we stranned two steel nontoons onto the raft	
Each pontoon weighs 200 kg and contains 1.0 m ³ of empty vacuum.	
How many 70 kg people can float on our new raft without sinking?	
37	
40	
O 39	
38	

Question 14	ots
A ball with a mass m=0.11kg and a volume V=0.025m3 is tethered to the bottom of a container filled with water to a depth D=25cm. It is suspended so that the top of the ball is a distance L=10cm from the bottom of the container.	

Question 15

1 pts

Which of the following is NOT a requirement for the continuity equation to be true?

The flow must be laminar.

The fluid must move at a constant speed.

The fluid must be incompresible.

The fluid must have a low viscosity.

Question 16

At point 1, fluid is moving through a tube with a cross-sectional area A1.

At point 2, the tube has a cross-sectional area A2 that is half of A1.

How does the fluid velocity V1 compare to the fluid veloicty V2 ?

• At point 1, The fluid moves four times as fast as it moves at point 2.

• At point 2, The fluid moves four times as fast as it moves at point 1.

The fluids move at the same velocity at both points.

At point 1, the fluid moves twice as fast as it moves at point 2.

At point 2, the fluid moves twice as fast as it moves at point 1.

Question 17	1 pts
Pipe 1 with cross-sectional area A1=1 m ² has fluid flowing through it at V1 = 100 m/s.	
Pipe 2 with cross-sectional area A2=4 m ² is attached on the end.	
Determine the flow velocity V2 in m/s through pipe 2.	
25	
50	
0 75	
0 100	

Question 18	1 pts
Which of the following are true when looking at two distinct points A and B in a pipe with respect to each other?	
When the pipe's area is halved, the velocity of the fluid doubles.	
If the flow rate at A doubles, the flow rate at B must double as well. correct	
When the pipe's diameter is quartered, the velocity of the fluid is quadrupled.	

Question 19

Propyl alcohol flows through a pipe from point A to point B. The pressure at point A is atmospheric. The pressure at point B is 0.25 atm. Point B is 2.0 m higher than point A. The velocity at point A is 10 m/s. The density of propyl alcohol is 803 kg/m^3.

What is the velocity at point B in m/s?

34.2			
15.8			
112.9			
24.6			

Question 20 1 pts	\$
Propyl alcohol flows through a pipe from point A to point B. The pressure at point A is atmospheric. The pressure at point B is 0.25 atm. Point B is 2.0 m higher than point A. The velocity at point A is 10 m/s. The density of propyl alcohol is 803 kg/m^3. What is the diameter of pipe in m at point B if the flow rate is 3 m^3/s?	
7.5	_
.34	_

1.1			
.49			

Question 21	1 pts
Which of the following are false?	
Blowing air between two sheets of paper forces them together.	
Bernoulli's principle gives that the pressure increases as velocity increases.	
Bernoulli's Equation applies to compressible gasses.	
Bernoulli's equation can be used to analyze hydrostatic fluids.	

Question 22	1 pts
Which of the following objects make use of Bernoulli's principle?	
race car	
frisbee	
helicopter	
air plane	

Not saved	Submit Quiz