Geometric Optics: Wave Equations Review

(1) This is a preview of the draft version of the quiz

Started: Nov 4 at 10:13am

Quiz Instructions

Question 1

A(n) \qquad wave requires a medium for propagation and its speed depends on \qquad .

O electromagnetic, the medium through which its travelingmechanical, the amount of energy in the waveelectromagnetic, the amount of energy in the wavemechanical, the medium through which its traveling

Question 2

In electromagnetic waves, the \qquad of the wave shows how much energy it carries.

- wave speedmedium

Question 3

A wave has a wavelength of 0.5 m and a frequency of 4 Hz . What is the speed of the wave?$4 \mathrm{~m} / \mathrm{s}$

- $2 \mathrm{~m} / \mathrm{s}$$12 \mathrm{~m} / \mathrm{s}$$8 \mathrm{~m} / \mathrm{s}$

Question 4

For a wave moving through a given medium, as the frequency \qquad the wavelength will \qquad .
increases, decreaseincreases, increaseincreases, not change
decreases, not change

Question 5

Which of the following are the same for X-rays, FM radio waves, and gamma rays traveling through air?The waves' wavelengthsAll of the aboveThe waves' frequenciesThe waves' speeds

Question 6

Order the following EM waves from least (left) to greatest (right) frequency.Visible Light < AM Raido < FM Radio < Ultraviolet Light < MicrowavesFM Radio < Ultraviolet Light < AM Radio < Microwaves < Visible LightMicrowaves < Ultraviolet Light < FM Radio < AM Radio < Visible LightAM Radio < FM Radio < Microwaves < Visible Light < Ultraviolet Light

Question 7

An EM Wave is made of $a(n)$ \qquad field and $a(n)$ \qquad field oscillating \qquad to each other.Magnetic | Mechanical | PerpendicularMechanical | Magnetic | ParallelElectric | Magnetic | ParallelElectric | Mechanical | ParallelMagnetic | Electric | Perpendicular

Question 8

The oscillation of a transverse wave is \qquad to its direction of travel and the oscillation of a longitudinal wave is
\qquad to its direction of travel.Parallel | ParallelPerpendicular | Perpendicular
Perpendicular | ParallelParallel | Perpendicular

Question 9

A certain wave has an amplitude of 1.5 m and a frequency of 2 Hz .
How long does it take in seconds for this wave to move six full wavelengths?

○

- 1

○ 4

Question 10

A wave with frequency of 4 Hz , an amplitude of 5.0 cm , and is at max height $(5.0 \mathrm{~cm})$ at time $\mathrm{t}=0$.
What is the height in cm of the wave at time $\mathrm{t}=0.5$ seconds?

- 3.751.25

What is the equation of the wave shown below?

$y(t)=4 \cos (2 \pi t)$
$y(t)=8 \cos (4 \pi t)$
$y(t)=4 \cos (4 \pi t)$
$y(t)=8 \cos (2 \pi t)$

What is the equation of the wave shown below?

$y(t)=3 \cos (2 \pi t)$
$\mathrm{y}(\mathrm{t})=6 \cos (\pi \mathrm{t})$
$y(t)=6 \cos (2 \pi t)$
$y(t)=3 \cos (\pi t)$

The trough-to-trough or crest-to-crest distance along a wave is called the \qquad and is measured in \qquad .

Wavelength | Meters

- Wavelength | SecondsPeriod | MetersPeriod \| Seconds

Question 14

Wave 1 has a frequency of 2 Hz , an amplitude of 10 cm , and is at max height at time $\mathrm{t}=0$.
Wave 2 has a frequency of 1 Hz , an amplitude of 20 cm , and is at max height at time $\mathrm{t}=0$.
What is the the difference in wave heights in cm between the two waves at time $\mathrm{t}=0.5$ seconds?

- 30

10

