Geometric Optics Test Review (C & D)

(1) This is a preview of the draft version of the quiz

Started: Jan 28 at 10:40am

Quiz Instructions

Question 1	1 pts
Which material will produce a converging lens with the longest focal length?	
\bigcirc Lucite, n = 1.5	
○ Flint glass, n = 1.66	
⊖ Quartz, n = 1.45	
○ Crown glass, n = 1.52	

Question 2	1 pts
An object is placed in front of a converging lens in such a way that the image produced is inverted and If the lens were replaced by one with a smaller index refraction, the size of the image would	of
⊖ increase	
\bigcirc increase or decrease, depending on the degree of change	
⊖ decrease	
\bigcirc remain the same	

Question 3	1 pts
You wish to make an enlarged reproduction of a document using a copying mad	chine.
When you push the enlargement button, the lens inside the machine moves to a point:	а
⊖ between f and 2f	
⊖ equal to 2f	
⊖ equal to f	
⊖ beyond 2f	

Question 4	1 pts
A negative image distance means that the image formed by a concave mirror	will be
⊖ smaller	
⊖ inverted	
⊖ erect	
⊖ real	

Question 5	1 pts
Real images can be produced by	
⊖ plane mirrors	
⊖ concave lenses (aka diverging)	

○ convex mirrors

○ convex lenses (aka converging)

Question 7	1 pts
An object is located 18 cm in front of a converging lens. An image twice as larg the object appears on the other side of the lens. The image distance must be _ cm.	ge as
Take the absolute value of your answer before typing it in the text box.	

Question 8	1 pts
A 2-meter-tall person stands 3.5 m in front o image is m.	f a vertical plane mirror. The height of his

Question 9	1 pts
If an optical medium has an average index of refraction of 2 for white light, it can concluded that a ray of white light traveling into the medium	n be
\bigcirc has 5 times the wavelength it would have in a vacuum	
⊖ must change its direction	
\bigcirc has 50% the frequency it would have in a vacuum	
\bigcirc has 50% the speed it would have in a vacuum	

Question 10	1 pts
The focal length is the radius of curvature for a spherical mirror.	
○ 1/4	
○ 1/9	
○ 1/2	
○ 1/3	

Question 11	1 pts
When white light travels from air into a glass prism and is dispersed into colors	,
○ blue light refracts over a smaller angle that red	
\bigcirc green light changes wavelength more than blue	
\bigcirc blue light has a lower speed than red	

 \bigcirc all frequencies of light travel at the same speed

Question 12

1 pts

As a ray of light moves from a medium with a lower index of refraction into a medium with a higher index of refraction,

 \bigcirc speed and frequency decrease, while wavelength remains the some

 \bigcirc speed and wavelength decrease, while frequency remains the some

 \bigcirc speed and wavelength increase, while frequency remains the same

 \bigcirc speed decreases, while frequency and wavelength remain the same

Question 13	1 pts
Which of the following are possible?	
☐ a concave lens produces a real image	
☐ a plane mirror produces a, virtual image	
☐ a concave mirror produces a real image	
a convex mirror produces a virtual image	

Question 14

1 pts

An object placed a distance d in front of a convex mirror with a focal length -f produces an image that is one half the size of the original object. Which of the following correctly expresses the focal length?

1/28/2021

⊖ -1/4 d			
⊖ -1/3 d			
⊖ -2 d			
⊖ -1/2 d			

Question 15	1 pts
White light entering a glass prism may be separated into its component color, a phenomenon dispersion, because	alled
\bigcirc each color has a different index of refraction in the glass	
\bigcirc longer wavelengths are refracted more than shorter wavelengths, separating the color	S
 each color undergoes a different frequency change as the light goes from the prism be air 	ack into
\bigcirc the red end of the spectrum retracts at a larger angle than the violet	

Question 16

1 pts

Light travels from a medium with an index of refraction N1 to a medium with an index of refraction N2 which is greater than N1. Which of the following must the true for total internal reflection to occur at this interface?

 \bigcirc Total internal reflection is not possible in this situation.

 \bigcirc The incident angle must he greater than arcsin N2/N1.

 \bigcirc The incident angle must be less than 45°.

 \bigcirc The incident angle must be greater than 45°.

Question 17

An object is placed at the focal point of a thin convex lens. Which of the following statements best describes the image that forms?

○ The image is real, forming at the focal length on the side of the lens opposite the object.

O The image is virtual, forming at twice the focal length on the same side of the lens as the object.

○ No image will form.

 \bigcirc The image is real, forming at twice the focal length on the side of lens opposite the object.

Question 1	8
-------------------	---

1 pts

1 pts

Which of the following statements provides the cause of and a possible solution for spherical lens aberration?

- Spherical aberration is produced when a lens bends different wavelengths of light by different amounts, causing multiple focal points. Making the lens more spherical will cause red light to bend more, reducing the effect.
- Spherical aberration is produced when a lens is not perfectly spherical, causing light to focus at multiple points. Both sides of the lens should be ground so that it is perfectly spherical.
- Spherical aberration is produced when the lens is ground so the focal length is greater than R/2, where R is the radius of curvature. Grinding the lens so that it is spherical but has less curvature will improve focus.
- Spherical aberration is produced when a spherical lens bends light from the edges to a closer focal point than light passing through closer to the center. Making the lens nonspherical will improve focus.

Question 19

1 pts

Which of the following statements describes the eye of a myopic (nearsighted) person and a possible solution?

- In nearsightedness, light passing through the eye's lens is focused in front of the retina, that is the focal length of the lens is less than the distance from the lens to the retina. A concave lens will increase the focal length to correct it.
- In nearsightedness, light passing through the eye's lens is focused in front of the retina, that is, the focal length of the lens is less than the distance from the lens to the retina. A convex lens will increase the focal length to correct it.
- In nearsightedness, light passing through the eye's lens is focused behind the retina, that is, the focal length of the lens is more than the distance from the lens to the retina. A convex lens will increase the focal length to correct it.
- In nearsightedness, light passing through the eye's lens is focused behind the retina, that is, the focal length of the lens is more than the distance from the lens to the retina. A concave lens will decrease the focal length to correct it.

Question 20

1 pts

For total internal reflection to occur at the interface between two different materials, all of the following conditions must be be met except

- \bigcirc the incident angle must be less than the critical angle
- \bigcirc the critical angle must be equal to arcsin N1/N2, where N1 is the indicent medium
- the incident angle must be the critical angle when the refracted angle is 90 degrees
- the incident path of the light must be from a medium with a higher index of refraction to a medium with a lower index of refraction

Question 21

1 pts

The image in a plane mirror of a person standing at a distance d in front of the mirror appears to the person to be

 \bigcirc vertically inverted, real, and a distance 2d from the person

 \bigcirc upright, real, and a distance d away

 \bigcirc vertically inverted, virtual, and a distance 2d from the mirror

upright, virtual, and a distance 2d away

Question 22

1 pts

An object is 2 meters in front of a plane mirror. The image is

 \bigcirc virtual, inverted, and 2 m behind the mirror

○ virtual, inverted, and 2 m in front of the mirror

○ real, upright, and 2 m behind the mirror

O virtual, upright, and 2 m behind the mirror

○ none of these

Question 23	1 pts
Which of the following is true when light enters a denser medium?	
\bigcirc v increases, wavelength decreases, and n increases	
\bigcirc v decreases, wavelength increases, and n increases	
\bigcirc v decreases, wavelength decreases, and n increases	
\bigcirc v increases, wavelength decreases, and n decreases	

○ v decreases, wavelength decreases, and n decreases

Question 25	1 pts
The image formed by a pinhole camera is	
\bigcirc upright, virtual, and larger than the object	
\bigcirc inverted, real, and smaller than the object	
\bigcirc inverted, real, and larger than the object	
\bigcirc inverted, virtual, and smaller than the object	
\bigcirc upright, real, and larger than the object	

Question 26

1 pts

The type of lens that refracts parallel light rays to the far focal point is a

⊖ converging, convex lens
⊖ diverging, concave lens
⊖ diverging, convex lens
\bigcirc All spherical lenses retract parallel rays to the far
⊖ converging, concave lens

Question 27	1 pts
An image appearing on a screen is	
⊖ real and upright	
\bigcirc virtual and inverted	
\bigcirc virtual and upright	
\bigcirc none of these	
\bigcirc real and inverted	

Question 28	1 pts
An image formed by a convex mirror is	
\bigcirc real and inverted	
⊖ real and upright	
\bigcirc no image is formed by this	
⊖ virtual and upright	
\bigcirc virtual and inverted	

Question 29	1 pts
Which of the following has the shortest wavelength?	
⊖ Radio waves	
⊖ Red light	
⊖ Blue light	
⊖ Gamma rays	
⊖ X rays	

Question 30	1 pts
A person's image appears on the far side of an optical instrument, upside dow What is the optical instrument?	n.
⊖ Concave lens	
⊖ Convex lens	
○ Plane mirror	

○ 1.4			
○ 1.3			
○ 1.5			

Question 32	1 pts
When light is incident on a surface, all the electromagnetic radiation is	
\bigcirc reflected, transmitted, and absorbed at a surface	
\bigcirc either rejected from the surface or transmitted	
\bigcirc either reflected from the surface or absorbed at the surface	
\bigcirc either reflected from the surface or absorbed	

Question 33

Light incident on the interface between air (n = 1) and water (n = 1.33) along the normal to the interface

 \bigcirc slows and is bent away from the normal

 \bigcirc slows and is bent toward the normal

 \bigcirc continues into the water at constant speed, but is bent toward the normal

 \bigcirc slows but is not bent since it travels along the normal

Question 34

1 pts

1 pts

A ray of light in air strikes the interface between air and water at some angle with the normal. In water, the ray has a

- \bigcirc smaller wavelength
- larger wavelength
- \bigcirc smaller frequency
- \bigcirc larger frequency

Question 35 1 pts

A layer of water (n = 1.33) covers a block of substance with an index of refraction of n = 1.41. Total internal reflection at the interface between the two media

- may occur when the ray of light goes from the glass to the water because the speed of light increases in the water
- may occur when the ray of light goes from the water to the glass because the speed of light increases in the glass
- occurs whenever the ray of light goes from the glass to the water because the speed of light increases in the water
- occurs whenever the ray of light goes from the water to the glass because the speed of light increases in the glass

Question 36

1 pts

A real image twice as large as an object is produced when the object is placed 30.00 cm away from a converging lens. What is the focal length of the lens in cm?

Quiz saved at 10:40am Sub

Submit Quiz