## Geometric Optics Test Review (C \& D)

(!) This is a preview of the draft version of the quiz

Started: Jan 28 at 10:40am

## Quiz Instructions

## Question 1

Which material will produce a converging lens with the longest focal length?

Lucite, $\mathrm{n}=1.5$

Flint glass, $\mathrm{n}=1.66$
Quartz, $\mathrm{n}=1.45$

Crown glass, $\mathrm{n}=1.52$

## Question 2

An object is placed in front of a converging lens in such a way that the image produced is inverted and If the lens were replaced by one with a smaller index of refraction, the size of the image wouldincreaseincrease or decrease, depending on the degree of changedecreaseremain the same

## Question 3

You wish to make an enlarged reproduction of a document using a copying machine. When you push the enlargement button, the lens inside the machine moves to a point:
between f and 2 f

- equal to $2 f$equal to $f$beyond $2 f$


## Question 4

1 pts

A negative image distance means that the image formed by a concave mirror will besmallerinverted
erect
real

## Question 5

Real images can be produced byplane mirrorsconcave lenses (aka diverging)convex lenses (aka converging)

## Question 6

The focal length of a concave mirror with a radius of curvature of 100 cm is $\qquad$ cm .
$\square$

## Question 7

An object is located 18 cm in front of a converging lens. An image twice as large as the object appears on the other side of the lens. The image distance must be $\qquad$ cm.

Take the absolute value of your answer before typing it in the text box.
$\square$

## Question 8

A 2-meter-tall person stands 3.5 m in front of a vertical plane mirror. The height of his image is $\qquad$ m.
$\qquad$

## Question 9

If an optical medium has an average index of refraction of 2 for white light, it can be concluded that a ray of white light traveling into the medium $\qquad$ .
has 5 times the wavelength it would have in a vacuummust change its directionhas $50 \%$ the frequency it would have in a vacuumhas $50 \%$ the speed it would have in a vacuum

## Question 10

The focal length is $\qquad$ the radius of curvature for a spherical mirror.

```
1/4
```1/9
\(1 / 2\)
\(1 / 3\)

\section*{Question 11}

1 pts

When white light travels from air into a glass prism and is dispersed into colors,blue light refracts over a smaller angle that red
green light changes wavelength more than blueblue light has a lower speed than redall frequencies of light travel at the same speed

\section*{Question 12}

As a ray of light moves from a medium with a lower index of refraction into a medium with a higher index of refraction,speed and frequency decrease, while wavelength remains the somespeed and wavelength decrease, while frequency remains the somespeed and wavelength increase, while frequency remains the samespeed decreases, while frequency and wavelength remain the same

\section*{Question 13}

1 pts

Which of the following are possible?a concave lens produces a real imagea plane mirror produces a, virtual imagea concave mirror produces a real imagea convex mirror produces a virtual image

\section*{Question 14}

1 pts

An object placed a distance \(d\) in front of a convex mirror with a focal length -f produces an image that is one half the size of the original object. Which of the following correctly expresses the focal length?
-1/4 d
\(-1 / 3 d\)\(-2 d\)
\(-1 / 2 d\)

\section*{Question 15}

White light entering a glass prism may be separated into its component color, a phenomenon called dispersion, because
each color has a different index of refraction in the glasslonger wavelengths are refracted more than shorter wavelengths, separating the colors
each color undergoes a different frequency change as the light goes from the prism back into air
the red end of the spectrum retracts at a larger angle than the violet

\section*{Question 16}

Light travels from a medium with an index of refraction N 1 to a medium with an index of refraction N2 which is greater than N1. Which of the following must the true for total internal reflection to occur at this interface?Total internal reflection is not possible in this situation.The incident angle must he greater than arcsin N2/N1.The incident angle must be less than \(45^{\circ}\).The incident angle must be greater than \(45^{\circ}\).

\section*{Question 17}

An object is placed at the focal point of a thin convex lens. Which of the following statements best describes the image that forms?

The image is real, forming at the focal length on the side of the lens opposite the object.
The image is virtual, forming at twice the focal length on the same side of the lens as the object.No image will form.The image is real, forming at twice the focal length on the side of lens opposite the object.

\section*{Question 18}

Which of the following statements provides the cause of and a possible solution for spherical lens aberration?

Spherical aberration is produced when a lens bends different wavelengths of light by different amounts, causing multiple focal points. Making the lens more spherical will cause red light to bend more, reducing the effect.Spherical aberration is produced when a lens is not perfectly spherical, causing light to focus at multiple points. Both sides of the lens should be ground so that it is perfectly spherical.Spherical aberration is produced when the lens is ground so the focal length is greater than \(R / 2\), where \(R\) is the radius of curvature. Grinding the lens so that it is spherical but has less curvature will improve focus.

Spherical aberration is produced when a spherical lens bends light from the edges to a closer focal point than light passing through closer to the center. Making the lens nonspherical will improve focus.

\section*{Question 19}

1 pts

Which of the following statements describes the eye of a myopic (nearsighted) person and a possible solution?

In nearsightedness, light passing through the eye's lens is focused in front of the retina, that is the focal length of the lens is less than the distance from the lens to the retina. A concave lens will increase the focal length to correct it.In nearsightedness, light passing through the eye's lens is focused in front of the retina, that is, the focal length of the lens is less than the distance from the lens to the retina. A convex lens will increase the focal length to correct it.In nearsightedness, light passing through the eye's lens is focused behind the retina, that is, the focal length of the lens is more than the distance from the lens to the retina. A convex lens will increase the focal length to correct it.In nearsightedness, light passing through the eye's lens is focused behind the retina, that is, the focal length of the lens is more than the distance from the lens to the retina. A concave lens will decrease the focal length to correct it.

\section*{Question 20}

For total internal reflection to occur at the interface between two different materials, all of the following conditions must be be met exceptthe incident angle must be less than the critical anglethe critical angle must be equal to arcsin \(\mathrm{N} 1 / \mathrm{N} 2\), where N 1 is the indicent mediumthe incident angle must be the critical angle when the refracted angle is 90 degreesthe incident path of the light must be from a medium with a higher index of refraction to a medium with a lower index of refraction

The image in a plane mirror of a person standing at a distance \(d\) in front of the mirror appears to the person to be
vertically inverted, real, and a distance 2 d from the person
upright, real, and a distance d awayvertically inverted, virtual, and a distance 2d from the mirror
upright, virtual, and a distance 2d away

\section*{Question 22}

An object is 2 meters in front of a plane mirror. The image is
virtual, inverted, and 2 m behind the mirror
virtual, inverted, and 2 m in front of the mirrorreal, upright, and 2 m behind the mirror
virtual, upright, and 2 m behind the mirrornone of these

\section*{Question 23}

Which of the following is true when light enters a denser medium?v increases, wavelength decreases, and n increasesv decreases, wavelength increases, and n increasesv decreases, wavelength decreases, and n increases
v increases, wavelength decreases, and n decreasesv decreases, wavelength decreases, and n decreases

\section*{Question 24}

At and beyond the critical angle, all the light striking the boundary between two substances is
dispersedabsorbedtransmittedreflectedrefracted

\section*{Question 25}

The image formed by a pinhole camera isupright, virtual, and larger than the objectinverted, real, and smaller than the objectinverted, real, and larger than the object
inverted, virtual, and smaller than the object
upright, real, and larger than the object

\section*{Question 26}

The type of lens that refracts parallel light rays to the far focal point is a
converging, convex lensdiverging, concave lens
O diverging, convex lens

All spherical lenses retract parallel rays to the farconverging, concave lens

\section*{Question 27}

An image appearing on a screen isreal and uprightvirtual and invertedvirtual and uprightnone of thesereal and inverted

\section*{Question 28}

An image formed by a convex mirror isreal and invertedreal and uprightno image is formed by thisvirtual and upright
virtual and inverted

\section*{Question 29}

Which of the following has the shortest wavelength?

Radio waves

Red lightBlue light

Gamma rays
X rays

\section*{Question 30}

1 pts

A person's image appears on the far side of an optical instrument, upside down. What is the optical instrument?

Concave lens

Convex lens
Convex mirror

Concave mirror
Plane mirror

\section*{Question 31}

1 pts

Which of the following refraction indexes will produce a convex lens that has the longest focal length?1.2
1.3
1.5

\section*{Question 32}

1 pts

When light is incident on a surface, all the electromagnetic radiation isreflected, transmitted, and absorbed at a surfaceeither rejected from the surface or transmittedeither reflected from the surface or absorbed at the surface
either reflected from the surface or absorbed

\section*{Question 33}

Light incident on the interface between air \((n=1)\) and water ( \(n=1.33\) ) along the normal to the interfaceslows and is bent away from the normalslows and is bent toward the normalcontinues into the water at constant speed, but is bent toward the normal
slows but is not bent since it travels along the normal

A ray of light in air strikes the interface between air and water at some angle with the normal. In water, the ray has asmaller wavelengthlarger wavelengthsmaller frequencylarger frequency

\section*{Question 35}

A layer of water \((\mathrm{n}=1.33\) ) covers a block of substance with an index of refraction of n \(=1.41\). Total internal reflection at the interface between the two mediamay occur when the ray of light goes from the glass to the water because the speed of light increases in the watermay occur when the ray of light goes from the water to the glass because the speed of light increases in the glass
occurs whenever the ray of light goes from the glass to the water because the speed of light increases in the water
occurs whenever the ray of light goes from the water to the glass because the speed of light increases in the glass

\section*{Question 36}

A real image twice as large as an object is produced when the object is placed 30.00 cm away from a converging lens. What is the focal length of the lens in cm?
\(\square\)
\begin{tabular}{|c|c|}
\hline Quiz saved at 10:40am \begin{tabular}{|l|}
\hline Submit Quiz \\
\hline
\end{tabular} \\
\hline
\end{tabular}```

