Kinematic Equations Review

(!) This is a preview of the published version of the quiz

Started: Oct 16 at 11:48am

Quiz Instructions

Do not type in the units. Round your answer to one decimal place.

Question 1 1 pts

An object dropped from rest on planet earth ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$) travels 50 meters. What is the speed of the object after falling those 50 meters?
\square

Question 2

1 pts

An object with initial speed of $8 \mathrm{~m} / \mathrm{s}$ accelerates uniformly at $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for a distance of 120 meters. What is the final speed of the object after the 120 meters?
\square

Question 3

1 pts

A skier starts from rest and skis down a hill side of length 500 meters in 50 seconds.
What is the average acceleration magnitude of the skier?
\square

Question 4

A ball is thrown straight down with an initial velocity of $13 \mathrm{~m} / \mathrm{s}$. Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is the speed of the ball after 10 seconds?
\square

Question 5

An astronaut on Planet Z drops a hammer initially at rest a distance of 300 meters. It takes the hammer 20 seconds to hit the ground. What is the acceleration magnitude on Planet Z ?
\square

Question 6

An object with mass 400 kg is dropped on a Planet K which has no atmosphere and an acceleration of gravity $6.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is the velocity of the object after 10 seconds if dropped from rest after?
\square

Question 7

An object on Planet K with acceleration of $6.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ and no atmosphere is dropped for 30 seconds. Assume initial velocity is zero. How far will the object travel in those 30 seconds?
\square

Question 8

An object has initial velocity $20 \mathrm{~m} / \mathrm{s}$ and reaches a velocity of $40 \mathrm{~m} / \mathrm{s}$ in a time of 6 seconds. What is the average velocity of the object?
\square

An object has initial velocity $20 \mathrm{~m} / \mathrm{s}$ and reaches a velocity of $40 \mathrm{~m} / \mathrm{s}$ in a time of 5 seconds. What is the average acceleration of the object?
\square

Question 10

The shape of the v-t graph for a uniformly (aka constantly) accelerating object is a diagonal.True
False

Question 11

The shape of the x-t graph for a uniformly (aka constantly) accelerating object is a curve.

True

False

Question 12

The shape of the distance-time graph for a uniformly (aka constantly) accelerating object is a curve.True

Oalse

Question 13

Objects in free fall are not uniformly accelerating.True

Oalse

Question 14

An object in free fall on planet earth always experiences an acceleration downward of 10 $\mathrm{m} / \mathrm{s} / \mathrm{s}$ even if the object has a non-zero initial velocity upward.TrueFalse

Question 15 1 pts

The slope of the velocity-time graph is the acceleration.

True

False

Question 16

An object uniformly accelerates from $15 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$ in 3 seconds. What is the distance traveled by the object in those 3 seconds?
hint:
Start by finding the acceleration.
\square

