Magnetism: Electromagnetic Induction

() This is a preview of the draft version of the quiz

Started: Nov 20 at 2:04pm

Quiz Instructions

Question 1	1 pts
Which of the following has the most magnetic flux in magnetic field with a strength T?	of 0.5
A 0.5 m ² loop with its face at a 45 degree angle to the magnetic field	
A 0.5 m ² loop with its face parallel to the magnetic field	
A 0.5 m ² loop with its face parallel to the magnetic field	
A 0.5 m ² loop with its face perpendicular to the magnetic field	

Question 2	1 pts
Which of the following must change if there is to be an induced emf?	
○ the resistance in the loop	
the position of the loop in the magnetic field	
 the induced current 	
the magnetic flux	

Question 3 1 pts

Question 5

\times	\times	\times	$_{A}$	
\times	\times	\times	×	
\times	\times	v ← ×	\times	
\times	\times	\times	3 ×	
\times	\times	\times	X	
The wire AB of I field 'B' is shown	length 'l' slides o n in the figure. T	on the fixed rails v The current induce	with constant veloc ed in the loop is-	ity 'v'. The magnetic
(B·I·v)/R anti -	clockwise			
2(B·I·v)/R cloc	kwise			
zero				
☐ (B·I·v)/R clock	wise			

Question 6 1 pts

If the straight wire AB is replaced by a semicircular wire, the magnitude of the induced current will-

remain the same

increase or decrease depending on whether the semicircle bulges towards the resistance or away from it

decrease

Question 7	1 pts
A bar magnet is released from rest along the axis of a very long vertical copper tul after some time the magnet -	be,
will stop in the tube	
will oscillate	
will move with acceleration 'g'	
will move with almost constant speed	

Question 8	1 pts

\odot	0	0	⊙ B
\odot	∕ ⊙ '	\odot	\odot
\odot	\bigcirc	0/	\odot
\odot	0	0	\odot

There is a counterclockwise current 'l' in a circular loop of wire situated in an external magnetic field 'B' directed out of the page as shown. The effect of the forces that act on this current is to make the loop-

expand	in	size
--------	----	------

- accelerate into the page
- contract in size

rotate about an axis perpendicular to the page

rotate about an axis in the plane of the page

Question 9	1 pts

A uniform magnetic field 'B' is directed out of the page, as shown above. A loop of wire of area 0.60 m^2 is in the plane of the page. At a certain instant the field has a magnitude of 4.0 T and is decreasing at the rate of 0.20 T/s. The magnitude of the induced emf in the wire loop at this instant is most nearly-

🔲 0.48 V			
🔲 0.20 V			
🔲 0.12 V			
🔲 0.60 V			
🔲 1.12 V			

Question 10	1 pts
A conducting loop is placed in a uniform magnetic field with its plane perpendicula field. An emf is induced in the loop if (choose all that apply)-	r to the
it is translated	
it is rotated about its axis	
it is deformed	

it is rotated about a diameter

Not saved Submit Quiz