Magnetism: Review

(!) This is a preview of the draft version of the quiz

Started: Nov 20 at 2:05pm

Quiz Instructions

Question 1

Below is a diagram of two bar magnets. Lines have been drawn it to represent the pattern that iron filings made when sprinkled over the tops of the magnets.

If Pole A is a north pole, then B is \qquad and C is \qquad .
north pole, north pole
south pole, north polesouth pole, south polenorth pole, south pole

Question 2

The magnets have been rearranged and a new sketch has been made of the magnetic field lines. Which of the following arrangement of the magnets could produce this field?
© AB-CD

BA-DC

BA-CD

None of these

Question 3

What is the direction of the magnetic field at point A ?

O into the screen
to the top of the screenout of the screento the bottom of the screen

Question 4

Current \rightarrow

If the current through the wire is I, what is the strength of the magnetic field at point A ?$4 \times 10^{\wedge}-7 \mathrm{I} / \mathrm{r}$
$9 \times 10^{\wedge}-7 \mathrm{I} / \mathrm{r}$$8 \times 10^{\wedge}-7 \mathrm{l} / \mathrm{r}$
$2 \times 10^{\wedge}-7 \mathrm{l} / \mathrm{r}$

Question 5

A magnetic field of 0.2 T forces a beam of protons of 1.3 mA into a circular path with a radius of 0.12 m . The plane of the circle is perpendicular to the magnetic field. What is the approximate speed of a proton in the beam as it moves along the circular path?$0.3 \times 10^{\wedge} 6 \mathrm{~m} / \mathrm{s}$$2.1 \times 10^{\wedge} 6 \mathrm{~m} / \mathrm{s}$
$2.3 \times 10^{\wedge} 6 \mathrm{~m} / \mathrm{s}$
$4.6 \times 10^{\wedge} 6 \mathrm{~m} / \mathrm{s}$

Question 6

A magnetic field of 0.2 T forces a beam of protons of 1.3 mA into a circular path with a radius of 0.12 m . The plane of the circle is perpendicular to the magnetic field.

For the magnetic field described above, if the magnetic field is oriented out of the screen and the circular path in the plane of the screen, which direction are the protons moving?
counterclockwise
into the screen
out of the screen
clockwise

Question 7

A long, thin wire carries a current of 1.0 A. What is the strength of the magnetic field at a point 0.5 m from the wire?
$8 \times 10^{\wedge}-7$ T
$4 \times 10^{\wedge}-7$ T
$2 \times 10^{\wedge}-7$ T
$1 \times 10^{\wedge}-7$ T

Question 8

Consider a proton moving in an electric field 'E' with velocity ' v ' and let the charge of a proton be represented by 'e'. What strength magnetic field would allow the proton to move at a constant speed, undeflected?evEv

○ ev/E

Two conducting loops of equal size and radius carry equal currents but in opposite directions. The loops are arranged parallel to each other and are centered on the same axis. What direction is the magnetic field at a point in the center of the loop on the right?
to the left
to the right
into the screen

Question 10

Two long wires are fixed so that they run parallel and cannot move from their positions. They both carry an equal amount of current in the same direction. Which of the following is true about a point between the wires that is exactly the same distance from each wire?

The force between the wires is repulsive and the magnetic field is zero.

The force between the wires is attractive and the magnetic field is into the screen.The force between the wires is attractive and the magnetic field is zero.The force between the wires is repulsive and the magnetic field is into the screen.

Question 11

What is magnetic flux?
how quickly an oscillating magnetic field changes strength
the rate of change in a magnetic field
the amount of magnetic field that changes as an object moves through a field
the amount of magnetic field passing through a surface

Question 12

A 0.25 m long copper rod has a constant velociy of $0.40 \mathrm{~m} / \mathrm{s}$ traveling through a uniform magnetic field. of 0.050 T . The motion of the rod, the copper rod and the magnetic field are all perpendiculart to each other. What is the potential difference induced across the length of the rod?
\bigcirc 0.015 V0.020 V0.010 V

```
0.005 V
```


Consider the loop of wire in the magnetic field above. As the loop of wire moves out of the magnetic field as a constant speed, which of the following is true about the current in the loop?The current decreases as the loop leaves the magnetic field.There is no current.The current increases as the loop leaves the magnetic field.The current flows in the clock-wise direction

```
x > × }\times\times\times\times\times\times
```



```
x\times\times\times\times\times\times\times\times\times\times
x < < x x x x x x
```



```
x }\times\times\times\times\times\times\times\times
x > × }\times\times\times\times\times\times
```


If the loop of wire has sides of lengths 'l' and 'm', 'l' being the shorter side and a resistance ' R ', what is the current in the wire induced by its motion in the magnetic field B ?
$\mathrm{Blv} / \mathrm{R}$

- Blv
mv
- Bmv/R

Consider a rigid, square-shaped loop of copper wire with sides of length 0.05 m and resistance 0.03 ohms and a magnetic field of 0.10 T . The loop of wire moves across all 3 regions at a constant velocity of $0.15 \mathrm{~m} / \mathrm{s}$.

What is the flux in the loop when it is entirely in Region 2?
$2.5 \times 10^{\wedge}-4 \mathrm{Tm}^{\wedge} 2$
$5.0 \times 10^{\wedge}-4 \mathrm{Tm}^{\wedge} 2$
$2.5 \times 10^{\wedge}-5 \mathrm{Tm}^{\wedge} 2$
$5.0 \times 10^{\wedge}-5 \mathrm{Tm}^{\wedge} 2$

Region 1

Region 2
Region 3

Consider a rigid, square-shaped loop of copper wire with sides of length 0.05 m and resistance 0.03 ohms and a magnetic field of 0.10 T . The loop of wire moves across all 3 regions at a constant velocity of $0.15 \mathrm{~m} / \mathrm{s}$.

Which statement is true when the loop of wire moves from Region 1 into Region 2?

The current in the wire is zero.
The induced current is less than it will be when the loop is entirely in Region 2.The induced current is greater than the current is while the loop moves from Region 2 to 3 .The induced current will flow counter-clockwise.

Consider a rigid, square-shaped loop of copper wire with sides of length 0.05 m and resistance 0.03 ohms and a magnetic field of 0.10 T . The loop of wire moves across all 3 regions at a constant velocity of $0.15 \mathrm{~m} / \mathrm{s}$.

What is the current in the loop while it is entirely in Region 2?0.48 A0.023 A1.2 A0 A

Consider a rigid, square-shaped loop of copper wire with sides of length 0.05 m and resistance 0.03 ohms and a magnetic field of 0.10 T . The loop of wire moves across all 3 regions at a constant velocity of $0.15 \mathrm{~m} / \mathrm{s}$.

What is the current in the loop when it moves from Region 2 to Region 3?0.050 A
0.025 A0.0075 A
0.0090 A

Current -

If the current through the wire on top is 0.15 A and the current through the wire on bottom is 0.2 A , what is the strength of the magnetic field at point A where r is 0.12 m ?
$2.5 \times 10^{\wedge}-7 \mathrm{~T}$$5.8 \times 10^{\wedge}-7 \mathrm{~T}$$3.3 \times 10^{\wedge}-7 \mathrm{~T}$
$0.8 \times 10^{\wedge}-7 \mathrm{~T}$
4.0 V

