Magnetism: Review

 $(\ensuremath{\underline{I}})$ This is a preview of the draft version of the quiz

Started: Nov 20 at 2:05pm

Quiz Instructions

Question 1	1 pts					
Below is a diagram of two bar magnets. Lines have been drawn it to represent the pattern that iron filings made when sprinkled over the tops of the magnets.						

Question 2	1 pts
× × × ×	×
The magnets have been rearranged and a new sketch has been made of the ma field lines. Which of the following arrangement of the magnets could produce this	ignetic ifield?
O AB-CD	
◎ BA-DC	
O BA-CD	
None of these	

Question 3	1 pts
	Current 🗲
r •A	
What is the direction of the magnetic field at point A?	
into the screen	
 to the top of the screen 	
out of the screen	

Question 4	1 pts
	Current 🗲
	r •A
If the current through the wire is I, what is the	strength of the magnetic field at point A?
 4 x 10^-7 l/r 9 x 10^-7 l/r 	
 8 x 10^-7 l/r 2 x 10^-7 l/r 	

Question 5	1 pts
A magnetic field of 0.2 T forces a beam of protons of 1.3 mA into a circular path v radius of 0.12 m. The plane of the circle is perpendicular to the magnetic field. W the approximate speed of a proton in the beam as it moves along the circular patl	vith a ′hat is h?
0.3 x 10^6 m/s	
2.1 x 10 ⁶ m/s	
○ 2.3 x 10^6 m/s	
○ 4.6 x 10^6 m/s	

Question 6	1 pts

A magnetic field of 0.2 T forces a beam of protons of 1.3 mA into a circular path with a radius of 0.12 m. The plane of the circle is perpendicular to the magnetic field.

For the magnetic field described above, if the magnetic field is oriented out of the screen and the circular path in the plane of the screen, which direction are the protons moving?

 into the screen out of the screen clockwise 	
 out of the screen clockwise 	
Clockwise	

Question 7	1 pts
A long, thin wire carries a current of 1.0 A. What is the strength of the magnetic fiel point 0.5 m from the wire?	d at a
○ 8 x 10^-7 T	
○ 4 x 10^-7 T	
○ 2 x 10^-7 T	
○ 1 x 10^-7 T	

Question 8	1 pts
Consider a proton moving in an electric field 'E' with velocity 'v' and let the charge proton be represented by 'e'. What strength magnetic field would allow the proton move at a constant speed, undeflected?	of a to
○ ev	
○ Ev	
○ ev/E	

https://dvusd.instructure.com/courses/19549/quizzes/391574/take?preview=1

○ E/v

Question 9	1 pts
Two conducting loops of equal size and radius can directions. The loops are arranged parallel to eac axis. What direction is the magnetic field at a point	arry equal currents but in opposite th other and are centered on the same nt in the center of the loop on the right?
○ to the left	
 to the right 	

into the screen

Quiz: Magnetism: Review

out of the screen

Question 10 1 pts

Two long wires are fixed so that they run parallel and cannot move from their positions. They both carry an equal amount of current in the same direction. Which of the following is true about a point between the wires that is exactly the same distance from each wire?

The force between the wires is repulsive and the magnetic field is zero.

The force between the wires is attractive and the magnetic field is into the screen.

The force between the wires is attractive and the magnetic field is zero.

The force between the wires is repulsive and the magnetic field is into the screen.

Question 11 1 pts What is magnetic flux? how quickly an oscillating magnetic field changes strength the rate of change in a magnetic field the amount of magnetic field that changes as an object moves through a field the amount of magnetic field passing through a surface

Question 12

1 pts

A 0.25 m long copper rod has a constant velociy of 0.40 m/s traveling through a uniform magnetic field. of 0.050 T. The motion of the rod, the copper rod and the magnetic field are all perpendiculart to each other. What is the potential difference induced across the length of the rod?

0.015 V			
0.020 V			
0.010 V			
0.005 V			

Questi	on 1	3								1 pts
×	×	×	×	X	×	X	×	×	×	
×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	v
×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	
Consider	the l	оор о	f wire	in th	e ma	gnetic	c field	abov	e. As the loop of w	ire moves out of

Consider the loop of wire in the magnetic field above. As the loop of wire moves out of the magnetic field as a constant speed, which of the following is true about the current in the loop?

The current decreases as the loop leaves the magnetic field.

There is no current.

The current increases as the loop leaves the magnetic field.

The current flows in the clock-wise direction

Question 15	1 pts

Question 16	1 pts

Region 1	Region 2									Region				
		×	×	×	×	×	×	×	×	×	×			
		×	×	×	×	×	×	×	×	×	×			
		×	×	×	×	×	×	×	×	×	×			
	v 、	v .	v .	×	×	×	×	×	×	×	×	×	×	
		×	×	×	×	×	×	×	×	×	×			
		×	×	×	×	×	×	×	×	×	×			
	-	×	×	×	×	×	×	×	×	×	×			
		×	×	×	×	×	×	×	×	×	×			
Consider a rigid, square resistance 0.03 ohms a regions at a constant ve What is the current in th	e-shaped l nd a magi elocity of C ne loop wh	loop c netic 1).15 n nile it i	of co field n/s. is er	ppe of 0 ntirel	r wir .10 y in	e wi T. TI Reg	th si ne lo	des oop o 2?	of le	engtl ire n	h 0.09	5m and across all 3		
0.023 A														
─ 1.2 A														

Question 18	1 pts

	I	Region 2								R		
		×	×	×	×	×	×	×	×	×	×	
		×	×	×	×	×	×	×	×	×	×	
		×	×	×	×	×	×	×	×	×	×	
	v .	×	×	×	×	×	×	×	×	×	×	
	\rightarrow	×	×	×	×	×	×	×	×	×	×	
		×	×	×	×	×	×	×	×	×	×	
	-	×	×	×	×	×	×	×	×	×	×	
		×	×	×	×	×	×	×	×	×	×	
Consider a rigid, squar	e-shaped l	oop o	of co	ppe	r wir	e wi	th si	des	ofle	engt	n 0.0	5m and
Consider a rigid, squar esistance 0.03 ohms a egions at a constant v Vhat is the current in t 0.050 A	e-shaped l and a magi elocity of 0 he loop wh	oop c netic 1 0.15 n nen it	of co field n/s. mov	of 0	r wir .10	e wi T. TI Reg	th si ne lo	des oop o 2 to	of le of wi	engti ire n	n 0.0 nove 3?	5m and s across
ionsider a rigid, squar esistance 0.03 ohms a egions at a constant v /hat is the current in t 0.050 A 0.025 A	e-shaped I and a magi elocity of 0 he loop wh	oop o netic 1 0.15 n nen it	field n/s. mov	ppe of 0	r wir 10	e wi T. TI Reg	th si ne lo	des pop o 2 to	of le	engti ire n	n 0.0 nove	5m and s across
Consider a rigid, squar esistance 0.03 ohms a egions at a constant v Vhat is the current in t 0.050 A 0.025 A 0.0075 A	re-shaped I and a mag relocity of 0 he loop wh	oop o netic 1 0.15 n nen it	field n/s. mov	ppe of 0 ves f	r wir .10 ⁻	e wi T. TI Reg	th si ne lo	des pop o 2 to	of le	ire n	n 0.0 nove 3?	5m and s across

Question 20	1 pts

Quiz saved at 2:05pm

Submit Quiz