Quantum Physics: Wave-Particle Duality

(1) This is a preview of the draft version of the quiz

Started: Nov 4 at 11:04am

Quiz Instructions

1 pts

Question 2	1 pts
What is the signficance of the Davisson-Germer experiment?	
 it provided evidence for the structure of an atom 	

 it provided ev 	idence for the emission spectrum of hydrogen
 it provided ev 	idence for the de Broglie wavelength
 it provided ev 	idence for the Bohr model of an atom

Question 3	1 pt
A very small particle has a mass m and a velo of m/2 and a velocity of 2v, what is the wavele	pocity v. It is found to have a wavelength λ . If a second particle has a mass ength of the second particle?
ο λ/2	
Ο λ/16	
Ο λ	
Ο λ/4	

Question 4	1 pts
Which of the following behaviors is best explained by the wave model of light?	
pair production	
 Compton scattering 	

o diffraction

the photoelectric effect

Question 5	1 pts
An electron is traveling with a speed of 1.75×10^7 m/s. What is the effective wavelength of the electron?	
9.11 x 10-11 m	
● 8.32 x 10-11 m	
● 4.16 x 10^-11 m	
● 9.87 x 10-11 m	

Question 6	1 pts
A slow moving proton has its momentum doubled. How does this affect its deBroglie wavelength?	
○ it is doubled	
○ it is quadrupled	
it is divided by 2	
 it is divided by 4 	

Question 7	1 pts
The work function of copper is 4.7 eV. What is the threshold frequency for copper?	
○ 2.11 x 10^14 Hz	
○ 3.26 x 10^15 Hz	
○ 1.14 x 10^15 Hz	
○ 3.81 x 10^14 Hz	

Question 8	1 pts
Protons can be accelerated to nearly the speed of light in a particle accelerator. Find the deBroglie wavelength o proton moving with a speed of 2.90 x 10 ⁸ m/s.	of a
 ○ 2.35 x 10[^]-15 m 	
○ 3.32 x 10^-15 m	
● 1.37 x 10^-15 m	

Question 9

For a hypothetical piece of metal, it takes an amount of energy E to remove an electron from the surface of the metal. What is the maximum wavelength of light that can photo eject an electron from this metal?

) (hc)/E			
) f			
) hf			
) hc			
○ hcE			

Question 10	1 pts
The work functions for each metal are listed below. If light with a frequency of 5.56 x 10 ¹⁵ Hz strikes each surface which will emit an electron with the most energy?	e,

 Platinum ($\Phi = 6.35 \text{ eV}$)

 Copper ($\Phi = 4.7 \text{ eV}$)

 Gold ($\Phi = 5.1 \text{ eV}$)

 Lead ($\Phi = 4.14 \text{ eV}$)

Question 11	1 pts
What is the momentum of a microwave photon that has a wavelength of 4.1 cm?	
─ 5.51*10^-32 kg*m/s	
○ 2.12*10^-32 kg*m/s	
─ 5.17*10^-32 kg*m/s	
O 1.62*10^−32 kg*m/s	

Question 12	1 pts
At what velocity will an electron have a wavelength of 1.2 m?	
○ 7.12 x 10 [^] -4 m/s	
─ 6.06 x 10^-4 m/s	
─ 5.39 x 10^-4 m/s	
○ 6.78 x 10^-4 m/s	