Quantum Test Review (A & B)

(!) This is a preview of the draft version of the quiz

Started: Jan 28 at 10:35am

Quiz Instructions

Question 1	1 pts
Which of the following is not an isotope of hydrogen?	
deuterium	
○ quaternium	
○ protium	
_ tritium	
Question 2	1 pts
Which of the following nuclear transformations are possible?	
emission of a positron by a proton to produce a neutron	
capture of an electron by a proton to produce a nuetron	
decay of a neutron into a proton and an electron	
decay of a proton into a neutron and an electron	
Question 3	1 pts

\supset	The most stable isotopes always have an equal number of protons and neutrons in the nucleus.
0	There seems to be no general pattern for the ratio of neutrons ct protons for stable isotopes as the sizes of nuclei increase.
C	The ratio of neutrons to protons tends to decrease in stable isotopes as atomic number increases.
0	The ratio of neutrons to protons tends to increase in stable isotopes as atomic number increases.

Question 4	1 pts
Which of the following statements are true regarding atomic nuclei?	
☐ All nuclei of a given element have the same total number of nucleons.	
☐ All atomic nucleons are protons and nuetrons	
☐ All nuclei of a given element have the same number of protons.	
☐ All atomic nuclei have an approximately constant density, regardless of composition.	

Question 5	1 pts
In the Bohr model of the atom, if R is the orbital radius of an electron in the low energy state, what would the orbital radius of an electron in the 2nd energy lev	
○ 3R	
○ 9R	
○ 4R	

○ 6R

Question 6	1 pts
Which of the following statements are false regarding the development of the B model of the atom?	Sohr
The Bohr model was a planetary model for the electron, with the electron orbiting the r in a circular path around the nucleus.	nucleus
 The Bohr model had electrons orbiting at only certain distances from the nucleus, corresponding to specific energies. 	
☐ Compared to the previous Rutherford model, the Bohr model emphasized the structure nucleus.	e of the

Question 7	1 pts
As a result of the emission of an alpha particle, an atomic nucleus	
increases its atomic number by 2 and decreases its mass by 4	
O Increases its atomic number by 2 and increases its mass number by 4	
O decreases its atomic number by 2 and increases its mass number by 4	
odecreases its atomic number by 2 and decreases its mass number by 4	

Question 8 1 pts

During radioactive emission of gamma radiation in which no other particles are emitted, the gamma photons are emitted in pairs. Which conservation law would be defied if only one gamma photon were emitted?

oconservation of mass	
oconservation of energy	
oconservation of linear momentum	
○ conservation of charge	

Question 9	1 pts
A radioactive element has a half-life of 16 days. Which of the following statements is true rega	rding
one nucleus of radiant after 16 days?	
○ There is a 50% chance the nucleus will have decayed.	
○ The nucleus will decay only when a second nucleus is brought into contact with it.	
○ Half of the nucleus has decayed.	
○ The nucleus won't decay prior to 3.66 days, but should decay after that time.	

Question 10	1 pts
What nuclear transformations do not occur during beta decay?	
☐ A neutron decays into a proton and an electron.	
☐ A proton decays into a neutron and an electron.	
☐ An electron and proton combine to form a neutron.	
☐ An electron and a neutron combine to form a proton.	

Question 11	1 pts
Particles with mass may be given off by a nucleus through the proc decay, thus reducing the mass of the nucleus. Which of the followir these particles?	
○ electrons	
○ alpha particles	
○ gammas	
○ positrons	
Question 12	1 pts
A radioactive sample is placed in a cloud chamber so that the path- decay products can be seen as "tracks" in the chamber, A magnetic across the cloud chamber to help identify the decay products, Whice radioactive decay products would never change direction in the magnetic	c field is set up ch of the following
○ positrons	
○ gamma rays	
○ alpha particles	
○ beta particles	

When a nucleus in an excited state emits a gamma photon,

the reduction in mass of the nucleus corresponds to the energy of the gamma photon	
a neutron in the nucleus is converted to a proton of higher energy	
the atomic number is reduced, accounting for the energy of the emitted photon	
the mass number of the nucleus is reduced accounting for the energy of this emitted phenomena.	oton

Question 14	1 pts
An alpha particle is the nucleus of which atom?	
○ Helium	
○ Uranium	
○ Carbon-14	
○ Plutonium	
○ Hydrogen	

Question 15	pts
The Rutherford gold foil experiment demonstrated	
I. the plum pudding model	
II. atoms are mostly empty space	
III. electrons occupy specific energy levels	
○ III only	
○ I only	
○ I and III only	

○ II only	
○ II and III only	

Question 16	1 pts
In the Bohr model of the atom,	
I. electrons occupy energy levels with exact quantities of energy	
II. the photoelectric effect is described	
III. the absorption and emission of light spectra are predicted	
○ I only	
○ II and III only	
○ III only	
○ II only	
○ I and III only	

Question 17	1 pts
The photoelectric effect provided experimental evidence that light	
can constructively and destructively interfere	
○ is a transverse wave	
○ can diffract	
○ has a particle characteristic	
○ has a wave characteristic	

Question 18	1 pts
In a photoelectric experiment, the frequency of light is steadily increased. Whis statement below is correct?	ch
Increasing the frequency of light increases the induced current.	
 Increasing the frequency of light increases the energy of the emitted electrons. 	
Above the threshold frequency, electrons are emitted.	
Below the threshold frequency, no electrons are emitted.	
 Increasing the frequency of light increases the potential difference of the photocell. 	

Question 19	1 pts
In a photoelectric experiment, the intensity of light is steadily increased. Which statement below is correct?	
 Increasing the frequency of light increases the potential difference of the photocell. 	
Below the threshold frequency, no electrons are emitted.	
 Increasing the frequency of light increases the induced current. 	
Above the threshold frequency, electrons are emitted.	
 Increasing the frequency of light increases the energy of the emitted electrons. 	

Question 20	1 pts

Which answer correctly ranks the fundamental particles in order from most massive to least massive?

○ Alpha particle > proton > neutron > electron > beta particle	
○ Neutron > proton > electron > alpha particle > beta particle	
○ Alpha particle > beta particle > proton > neutron > electron	
○ Alpha particle > neutron > proton > electron > beta particle	
Neutron > proton > electron > alpha particle > beta particle	

Question 21	1 pts
An alpha particle is ejected from the nucleus of an atom. Which of the following answers describes the change in the nucleus of the atom?	9
○ The atomic number increases by 2, and the mass number increases by 4.	
The atomic number increases by 1,and the mass number remains unchanged.	
○ The atomic number increases by 1, and the mass number increases by 2.	
○ The atomic number increases by 1, and the mass number decreases by 4.	
○ The atomic number decreases by 2, and the mass number decreases by 4.	

Question 22	1 pts
A radioactive sample with a half-life of 5 days is analyzed after 20 days. The of remaining radioactive material as a fraction of the original sample is most%.	

Question 23 1 pts

A radioactive sample with a half-life of 10 days is discovered to have 25% of the original radioactive material. How many days has the sample been experiencing		
radioactive decay?		

Question 24	1 pts
Which statement regarding the forces in the nucleus is NOT correct?	
 When the ratio of neutrons to protons falls outside of an optimal range, the nucleus b unstable. 	ecomes
At short distances, the strong force is stronger than the electric force.	
The strong force attracts protons to protons.	
Adding neurons to a nucleus adds to both the strong force and the electrostatic force	
The strong force attracts neutrons to both protons and other neutrons.	

Question 25	1 pts
Which of the following are nucleons?	
☐ deuteron	
□ neutron	
□ proton	
□ electron	

Question 26	1 pts
What happens to a stream of alpha particles that is shot at a thin sheet of gold for	oil?
Most of the particles are absorbent by the foil	
○ All of the particles pass straight through	
○ All of the particles bounce back at 180°	
○ None of the particles are detected by more than 45°	
○ A few of the particles bounce back at 180°	

Question 27	1 pts
According to Bohr's model of the atom, why do atoms emit or absorb radio certain wavelengths?	ation only at
Because electrons can orbit the nucleus at any radius	
Because electrons orbit the nucleus only at certain discrete radii	
Because protons and electrons are distributed evenly throughout the atom.	
Because protons orbit the nucleus only certain discrete radii	
Because photons can only have discrete wavelengths	

Question 28 1 pts

What is the equation for a photon's momentum?

○ hc/f			
○ cfh			
○ cf/h			
○ hf/c			

Question 29	1 pts
Which of the following is the best definition of the uncertainty principle?	
An observed particle can be in two places at the same time	
Light exhibits both wave an particle properties	
We cannot know for certain when any given radioactive particle will undergo decay.	
The laws of physics are the same in all inertial reference frames	
○ We cannot know both momentum and the position of a particle at the same time.	

Question 30	1 pts
Which of the following particles is most massive?	
○ A neutron	
○ A proton	
○ An electron	
○ An alpha particle	

Quiz saved at 10:35am

Submit Quiz