Thermodynamics: Ideal Gases and Kinetic Theory

(!) This is a preview of the draft version of the quiz

Started: Nov 4 at 9:33am

Quiz Instructions

```
Question 1
If volume is held contanst and you
``` \(\qquad\)
``` the pressure on a gas, the temperature will
``` \(\qquad\)
``` .
increase, not change
increase, increase
decrease, increase
increase, decrease
```


Question 2

At a constant temperature, if you \qquad the pressure on a gas, the volume will \qquad .

[^0]decrease, decreaseincrease, decreaseincrease, increase

Question 3

An ideal gas is enclosed in a rigid container.
\qquad the temperature of an enclosed gas \qquad the velocity of particles, resulting in \qquad collisions with the rigid container.Lowering | Increases | MoreRasing | Decreases | MoreLowering | Decreases | LessRaising | Increases | Less

Question 4

An ideal gas is enclosed in a rigid container.
If there are fewer collisions of gas molecules with the container also means a decrease in \qquad .the number of moles of gas in the containerthe volume of the containerall of the abovethe pressure

Question 5

There are 6.0 moles of an ideal gas contained in a cube 1.5 m wide. The temperature is 30 K . What is the pressure in the cube? $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{molK}$
-463Pa503Pa

- 543 Pa
- 443 Pa

Question 6

Choose the two statements below that are true for a system at a constant temperature.In order to decrease the volume of a gas, work must be done on the gas.In order to decrease the volume of a gas, work must be done by the gas.An increase in the pressure of the system will not change the volume of it.An increase in the pressure of the system will requires an increase in the volume.An increase in the volume of the system will result in a decrease in the pressure.

Question 7

There are 3.0 moles of an ideal gas at 75 degrees C in a cubic box that measures 30 cm on each side. What is the force on one side of the box in kN ? $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{molK}$.

```
25kN
```31 kN27 kN29 kN

\section*{Question 8}

Which of the following will cause the largest increase in the pressure of an ideal gas in a container?decreasing the temperature of the gas by a factor of 2decreasing the amount of gas in the containerdoubling the temperature of the gasdoubling the volume of the container

\section*{Question 9}

Consider a piston that is being moved by an expanding gas using thermal energy from a heat source as shown in the content video for the previous section. If the chamber initially contains \(0.001 \mathrm{~m}^{\wedge} 3\) of hydrogen at 1 atm and 22 degrees C and the piston is free to move, then:
how much work is done by the gas to double the volume of hydrogen in the chamber?101.3J141.3J81.3J121.3J

\section*{Question 10}

Consider a piston that is being moved by an expanding gas using thermal energy from a heat source as shown in the content video for the previous section. If the chamber initially contains \(0.001 \mathrm{~m}^{\wedge} 3\) of hydrogen at 1 atm and 22 degrees \(C\) and the piston is free to move, then:

What is the corresponding increase in temperature of the hydrogen in the chamber?
\(\square 295 \mathrm{~K}\)321K442K387K

\section*{Question 11}

A spherical balloon with a diameter of 25 cm at atmospheric pressure and 27 degrees \(C\) contains helium. What is the balloon's change in volume in \(m^{\wedge} 3\) when it is put in a freezer at \(-3 \circ \mathrm{C}\) ? Assume the pressure remains constant.\(3.5 \times 10^{\wedge}-4\)\(8.2 \times 10^{\wedge}-4\)\(3.5 \times 10^{\wedge}-5\)\(8.2 \times 10^{\wedge}-5\)

\section*{Question 12}

There are \(314,159,265\) particles of an ideal gas in a sphere of radius 1.0 mm . What is the temperature of the particles if their pressure is 0.01 Pa ?
- 7,222K8,976K9,001K9,662K```

[^0]: increase, not change

