Thermodynamics: Laws

(!) This is a preview of the draft version of the quiz

Started: Nov 4 at 9:59am

Quiz Instructions

Question 1

Which of the following are correctly paired?

- isobaric | temperature
- isochoric | temperatureisochoric | volumeisobaric | volume

Question 2

Which of the following are indications that work has been done on the system? (Choose 2)There is a decrease in the average kinetic energy of the gas molecules.The sign for work is positive.The sign for heat is negative.The sign for work is negative.There is an increase in the total internal energy of the system.

Question 3

On a PV diagram, a line with a slope of 0 would represent which type of thermodynamic process?isochoricisothermicisobaricisometric

Question 4

What does the area under the curve represent on a PV diagram?temperaturetotal volumechange in pressurework

Question 5

When you're told that 3000 J of heat is added to a thermodynamic system, which variable does that quantity represent?

W

Question 6

Which variable represents the sum of the heat and work for a thermodynamic system?
W

Which of the following is correct about an isothermal system where $\mathrm{W}=+20 \mathrm{~J}$?20J of work was done by the system and 20J of heat was removed from the system
20J of work was done on the system and 20J of heat was added to the system20J of work was done on the system and 20J of heat was removed from the system20J of work was done by the system and 20J of heat was added to the system

Question 8

60 J of heat are added to a system. If the internal energy increases by 75 J , how much work is done on the system?15J0J-15J5J

Which of the following are true?A decrease in volume implies work done on the system.An increase in volume implies work done on the system.An increase in volume implies work done by the system.A decrease in volume implies work done by the system.

Question 10

A 1.4 mol sample of gas is taken from $0.001 \mathrm{~m}^{\wedge} 3$ to $0.005 \mathrm{~m}^{\wedge} 3$ at $450,000 \mathrm{~Pa}$ while $2,500 \mathrm{~J}$ of thermal energy is added. What is the change in internal energy U in J ?800700500600

Given the PV diagram below, how much work is done in J on the gas to go from Point A to B ?
-475-1000-500-975

Question 12

1 pts

Given the PV diagram below, how much work in J is done on the gas to go from Point A to B to C and back to A ?
50

Question 13

What is the change in temperature in K from point B to point C ? Assume 3 moles of an ideal gas.
-82.1$-76.8$$-24.3$$-28.1$

Question 14

If a 4 mol system increases in internal energy by $20,000 \mathrm{~J}$ with an initial pressure and volume of 220 kPa and 0.050 $\mathrm{m}^{\wedge} 3$ and $10,000 \mathrm{~J}$ of heat is also added, what is the final volume in $\mathrm{m}^{\wedge} 3$ of the isobaric system?.0035.0045.0025

Question 15

If a 16 mol system decreases in internal energy by $12,000 \mathrm{~J}$ with an initial pressure and volume of 110 kPa and 0.25 $\mathrm{m}^{\wedge} 3$ and $7,000 \mathrm{~J}$ of heat is also added, what is the final volume in $\mathrm{m}^{\wedge} 3$ of the isobaric system?.499.454,423.091

