Skydiver Problem Notes.

Assume there is air resistance, up is positive, down is negative, and that g = -10 m/s/s.

Force air resistance is proportional to the square of velocity, but we will ignore this fact for simplicity.

- 1. A skydiver is falling at a terminal constant velocity of 60 m/s. The skydiver's mass is 70 kg.
 - a. Draw a force diagram for the skydiver.
 - b. Write the $\sum F$ in terms of $F_{Air Resistance}$ and F_{g} .
 - c. Calculate force gravity in Newtons. $F_g = mg$
 - d. Calculate the $F_{Air Resistance}$ using Newton's 2nd Law $\sum F = ma$. Use substitution.
- The skydiver opens her parachute and begins to experience a constant positive acceleration of +12 m/s/s as the chute opens. Assume force air resistance on the skydiver (not including the parachute) is the same as in problem #1.
 - a. Draw a force diagram for the skydiver as the parachute opens.
 - b. Write the $\sum F$ in terms of $F_{Air Resistance}$, $F_{tension}$ and F_g .
 - c. Calculate force gravity in Newtons. $F_g = mg$
 - d. Calculate the $F_{tension}$ using Newton's 2nd Law $\sum F = ma$. Use substitution.

e. How many seconds until the skydiver comes to reach - 24 m/s?

- 3. The skydiver's parachute strings snap when she reaches a velocity of -24 m/s and she begins to accelerate downward at -3 m/s/s. The skydiver's new mass without the parachute is 60 kg and force air resistance is much less now that she is traveling at a slower speed.
 - a. Draw a force diagram for the skydiver.

- b. Write the $\sum F$ in terms of $F_{Air Resistance}$ and F_g .
- c. Calculate F_g in Newtons. $F_g = mg$
- d. Calculate the new $F_{Air Resistance}$ using Newton's 2nd Law $\sum F = ma$.

e. How much time is required for her to reach a final velocity of - 40 m/s?

f. Calculate the distance fallen as she accelerates from -24 m/s to -40 m/s.