Skydiver Problem Notes.

Assume there is air resistance, up is positive, down is negative, and that $\mathrm{g}=-10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
Force air resistance is proportional to the square of velocity, but we will ignore this fact for simplicity.

1. A skydiver is falling at a terminal constant velocity of $-60 \mathrm{~m} / \mathrm{s}$. The skydiver's mass is 70 kg .
a. Draw a force diagram for the skydiver.
b. Write the $\sum F$ in terms of $F_{\text {Air Resistance }}$ and F_{g}.
c. Calculate force gravity in Newtons. $F_{g}=m g$
d. Calculate the $F_{\text {Air Resistance }}$ using Newton's $2^{\text {nd }}$ Law $\sum F=m a$. Use substitution.
2. The skydiver opens her parachute and begins to experience a constant positive acceleration of $+12 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ as the chute opens. Assume force air resistance on the skydiver (not including the parachute) is the same as in problem \#1.
a. Draw a force diagram for the skydiver as the parachute opens.
b. Write the $\sum F$ in terms of $F_{\text {Air Resistance }}, F_{\text {tension }}$ and F_{g}.
c. Calculate force gravity in Newtons. $F_{g}=m g$
d. Calculate the $F_{\text {tension }}$ using Newton's $2^{\text {nd }}$ Law $\sum F=m a$. Use substitution.
e. How many seconds until the skydiver comes to reach - $24 \mathrm{~m} / \mathrm{s}$?
3. The skydiver's parachute strings snap when she reaches a velocity of $-24 \mathrm{~m} / \mathrm{s}$ and she begins to accelerate downward at $-3 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. The skydiver's new mass without the parachute is 60 kg and force air resistance is much less now that she is traveling at a slower speed.
a. Draw a force diagram for the skydiver.
b. Write the $\sum F$ in terms of $F_{\text {Air Resistance }}$ and F_{g}.
c. Calculate F_{g} in Newtons. $F_{g}=m g$
d. Calculate the new $F_{\text {Air Resistance }}$ using Newton's $2^{\text {nd }}$ Law $\sum F=m a$.
e. How much time is required for her to reach a final velocity of $-40 \mathrm{~m} / \mathrm{s}$?
f. Calculate the distance fallen as she accelerates from $-24 \mathrm{~m} / \mathrm{s}$ to $-40 \mathrm{~m} / \mathrm{s}$.
