Name: \qquad

Spring Energy Review WS 3

1. A mass of 2 kg is hung from a spring and creates a length of 1.2 meters. The total length of the same spring with a mass of 4.7 kg hanging is 2.25 meters. Find the spring constant ' k '.
2. A mass of 2 kg is hung from a spring and creates a length of 1.2 meters. The total length of the same spring with a mass of 4.7 kg hanging is 2.25 meters. How much spring potential energy is stored in the spring when the mass being hung is 4.7 kg ?
3. If the potential energy in a spring is tripled, by what factor is its stretched length increased?
4. A 100 kg car rolling on a horizontal surface has a speed of $90 \mathrm{~m} / \mathrm{s}$ when it strikes a horizontal coiled spring and is brought to rest in a distance of 4 m . What is the spring constant of the spring? Ignore friction.
5. A dart of mass .4 kg is loaded .5 meters into a vertically coiled spring chamber and is then released. The spring constant is $50 \mathrm{~N} / \mathrm{m}$ and the spring has negligible mass. What is the dart's speed the moment the spring restores to its starting point?
6. A dart of mass .4 kg is loaded .5 meters into a vertically coiled spring chamber and is then released. The spring constant is $50 \mathrm{~N} / \mathrm{m}$ and the spring has negligible mass. What is the maximum height the dart reaches?

7. A 25 kg block is dropped from rest at point A . The spring constant is $\mathrm{k}=700 \mathrm{~N} / \mathrm{m}$. Assume no friction. What is the maximum compression of the spring?
8. A 25 kg block is dropped from rest at point A . The spring constant is $\mathrm{k}=700 \mathrm{~N} / \mathrm{m}$. Assume that there is friction only between points C and B for a total of 3 meter. What is the maximum compression of the spring?
9. A 25 kg block is dropped from rest at point A . The spring constant is $\mathrm{k}=700 \mathrm{~N} / \mathrm{m}$. Assume that there is friction only between points C and B for a total of 3 meter. Find the final position of the block in terms of the distance from point B. At point B the surface is no longer horizontal.
