Standing Wave Lab

Materials: meter stick, digital scale, standing wave kit

Instructions:

- 1. Find the mass of the motor unit and calculate the force gravity. Assume the force gravity of the motor unit is the same as the tension in the string. Tension: _____ N
- 2. Establish a standing wave on the string. Measure the length of the string required to reach the standing wave: ______ m
- 3. Again, establish the standing wave and then measure the distance between nodes. Multiply this distance by two to obtain the wavelength: ______ m
- 4. Find the mass of the string used to create the standing wave: ______ kg
- 5. Find the linear density of the string with mu = (mass/length) = _____ kg/m
- 6. Calculate the velocity of the wave disturbance using v = sqrt(tenstion/mu) = _____ m/s
- 7. Calculate the frequency of the wave disturbance using v = frequency * wavelength: ______ Hz
- 8. What were some potential sources of errors in your experiment?