Date_____Pd____

Impulsive Force Model Worksheet 2: Impulsive Forces and Momentum

- Two objects, A & B, have identical <u>velocities</u>. Object A has 3 times the mass of object B.
 a. Find the value of the ratio of momentum A to momentum B. Justify your answer.
 - b. Find the value of the ratio of kinetic energy A to kinetic energy B. Justify your answer.
- Two objects, C & D, have the same <u>momentum</u>. Object C has ¹/₂ the mass of object D.
 a. Find the value of the ratio of velocity C to velocity D. Justify your answer.
 - b. Find the value of the ratio of kinetic energy C to kinetic energy D. Justify your answer.
- 3. The following questions refer to the motion of a baseball.
 - a. While being thrown, a net force of 132 N acts on a baseball (mass = 140 g) for a period of 4.5×10^{-2} sec. What is the magnitude of the change in momentum of the ball?
 - b. If the initial speed of the baseball is v = 0.0 m/s, what will its speed be when it leaves the pitcher's hand?
 - c. When the batter hits the ball, a net force of 1150 N, opposite to the direction of the ball's initial motion, acts on the ball for 9.0×10^{-3} s during the hit. What is the final velocity of the ball?
 - d. How large is the force the ball exerts on the bat? Explain.

- 4. A rocket, weighing $4.36 \ge 10^4$ N, has an engine that provides an upward force of $1.2 \ge 10^5$ N. It reaches a maximum speed of 860 m/s.
 - a. Draw a force diagram for the rocket.
 - b. For how much time must the engine burn during the launch in order to reach this speed?
- 5. A golf ball that weighs 0.45 N is dropped from a height of 1.0 m. Assume that the golf ball has a perfectly elastic collision with the floor.
 - a. Construct a motion map for the golf ball from the time it is dropped until it reaches its highest point of rebound.
 - b. Determine the time required for the ball to reach the floor.
 - c. What will the instantaneous momentum of the golf ball be immediately before it strikes the floor?

- d. What will be the <u>change in momentum</u>, (Δp) from the instant before the ball collides with the floor until the instant after it rebounds from the floor? (Illustrate with a vector diagram.)
- e. Suppose that the golf ball was in contact with the floor for $4.0 \ge 10^{-4}$ s. What was the average force on the ball while it was in contact with the floor?