Vector Addition

(!) This is a preview of the draft version of the quiz

Started: Nov 13 at 8:18am

Quiz Instructions

For the following questions, calculate the X and Y components and the Resultant Vectors where applicable. Round all your answers to the nearest whole number UNLESS the instructions specifically state otherwise.

Negative and positive directions should be included. Do not include units.
Question 1

Solve for theta. Round all of your answers to the nearest whole number.
\square

Question 3

An airplane is accelerating to the right, 27-degrees up, from horizontal. If the acceleration of the plane is $55.3 \mathrm{~m} / \mathrm{s}^{2}$, calculate the vertical and horizontal acceleration of the airplane. Round your answers to the nearest whole number.
y-component
\square

An airplane is accelerating to the right, 27-degrees up, from horizontal. If the acceleration of the plane is $55.3 \mathrm{~m} / \mathrm{s}^{2}$, calculate the vertical and horizontal acceleration of the airplane. Round your answers to the nearest whole number.
x-component
\square

Add the above Vectors, calculate the resultant vector and associated angle. Round your FINAL answers to the TENTHS PLACE.

Resultant magnitude in Newtons.
\square

Question 6

Add the above Vectors, calculate the resultant vector and associated angle. Round your FINAL answers to the TENTHS PLACE.

Resultant angle in degrees from the horizontal.
\square

Question 7

According to the figure above, which vector has a negative x-component? ${ }^{1}$F2F1NONE OF THE ABOVE

for the image above, calculate the resultant vector. Round all your answers to the nearest whole number.

Resultant magnitude in meters
\square
for the image above, calculate the resultant angle alpha. Round all your answers to the nearest whole number.
\square

Figure P-012
For the figure above, calculate the X and Y components for vectors A and B, then find the resultant vector of using vector addition. Only provide the magnitude and angle for the
resultant. Round all of your answers to the nearest whole number. Provide angle as a positive number with no direction.

X-component of vector A in m/s
\square

Question 11

For the figure above, calculate the X and Y components for vectors A and B, then find the resultant vector of using vector addition. Only provide the magnitude and angle for the resultant. Round all of your answers to the nearest whole number. Provide angle as a positive number with no direction.

Y-component of Vector A in m/s

\square

For the figure above, calculate the X and Y components for vectors A and B , then find the resultant vector of using vector addition. Only provide the magnitude and angle for the resultant. Round all of your answers to the nearest whole number. Provide angle as a positive number with no direction.

X-component of vector B in m/s

\square

Question 13

For the figure above, calculate the X and Y components for vectors A and B, then find the resultant vector of using vector addition. Only provide the magnitude and angle for the resultant. Round all of your answers to the nearest whole number. Provide angle as a positive number with no direction.

Y-component of Vector B in m/s

\square

Question 14

For the figure above, calculate the X and Y components for vectors A and B, then find the resultant vector of using vector addition. Only provide the magnitude and angle for the resultant. Round all of your answers to the nearest whole number. Provide angle as a positive number with no direction.

Resultant magnitude in m/s

\square

Question 15

For the figure above, calculate the X and Y components for vectors A and B, then find the resultant vector of using vector addition. Only provide the magnitude and angle for the resultant. Round all of your answers to the nearest whole number. Provide angle as a positive number with no direction.

Resultant angle in degrees

\square

