Coulomb's Law Components

- 1. A 1.0 C charge is 5.0 m away from a 2.0 C charge.
- a. Draw an arrow from the 2.0 C charge to show the force on the 2.0 C charge, and label it showing the magnitude of the force.

- b. Draw an arrow to show the force on the 1.0 C charge, and label it with the value of the magnitude. Which Newton's Law is illustrated here?
- 2. The 2.0 C charge is now 37° above the horizontal, as shown:

- a. Draw arrows to show the x- and y- components of force on the 2.0 C charge.
- b. Calculate the x- and y- components:

c. Find the magnitude of the force on the 2.0 C charge, using the Pythagorean theorem.

Coulomb's Law - Equilateral Triangle

1. Three 2.0 μ C charges are arranged in an equilateral triangle as shown. The side of the triangle is 3.0 cm.

2.0 uC A B 2.0 uC C 2.0 uC

a. Draw an arrow on charge C showing the force of charge A on charge C. Find the magnitude of this force.

FAAC =

b. Calculate the x- and y- components of $F_{A\rightarrow C}$:

FAGC x =

FAycy =

c. Find the net force on charge C by adding the effects of A and B on C:

F x = FA + C x + FB + C x =

Fy = FASCy + FBSCy =

2. Draw arrows from A, B, and C to show the net force on each:

0 0

0

Coulomb's Law - Another Equilateral Triangle

1. Two 2.0 μ C charges and a – 2.0 μ C charge are arranged in an equilateral triangle as shown. The side of the triangle is 6.0 cm.

a. Draw an arrow on charge C showing the force of charge A on charge C. Find the magnitude of this force.

b. Calculate the x- and y- components of $F_{A\rightarrow C}$:

c. Find the net force on charge C by adding the effects of A and B on C:

a. Draw an arrow to show the net force F on the 40 μC charge.

b. Find the x- and y- components and the magnitude of the net force on the 40 μC charge.