Waves and Sound Quiz

(!) This is a preview of the published version of the quiz

Started: May 3 at 9:01am

Quiz Instructions

Question 1
 1 pts

Waves travel on a string with velocity $40 \mathrm{~m} / \mathrm{s}$. The length between crest to crest is 5 meters. What is the frequency of the wave? Hz
\square

Question 2 1 pts

A string creates a standing wave with one loop when an oscillation of 20 Hz occurs. The speed of all waves traveling on the string is $60 \mathrm{~m} / \mathrm{s}$. What must be the length of the string? meters
\square

Question 3

A rope has a standing wave with one loop. The rope is of uniform density. The force tension in the rope is 16 N ; its mass is 5 kg ; its length is 5 meters. What is the velocity of waves traveling on the rope? m / s
\square

A rope has standing wave with one loop. The rope is of uniform density. The force tension in the rope is 16 N ; its mass is 5 kg ; its length is 5 meters. What is the wavelength of the fundamental frequency? m/s
\square

Question 5

A rope has a standing wave with one loop. The rope is of uniform density. The force tension in the rope is 16 N ; its mass is 5 kg ; its length is 5 meters. What is the fundamental frequency? Hz
\square

A rope has a standing wave with one loop. The rope is of uniform density. The force tension in the rope is 16 N ; its mass is 5 kg ; its length is 5 meters. What is the frequency of the 2 nd harmonic? Hz
\square

A rope has a standing wave with one loop. The rope is of uniform density. The force tension in the rope is 16 N ; its mass is 5 kg ; its length is 5 meters. What is the wavelength of the 2 nd harmonic? meters
\square

Question 8

A rope has a standing wave with one loop. The rope is of uniform density. The force tension in the rope is 16 N ; its mass is 5 kg ; its length is 5 meters. What is the wavelength of the 3rd harmonic? meters
\square

Question 9

A rope has a standing wave with one loop. The rope is of uniform density. The force tension in the rope is 16 N ; its mass is 5 kg ; its length is 5 meters. What is the frequency of the 3rd harmonic? Hz
\square

Question 10

A rope has a standing wave with one loop. The rope is of uniform density. The force tension in the rope is 16 N ; its mass is 5 kg ; its length is 5 meters. What is the wavelength of the 4th harmonic? meters
\square

A pipe with both ends open has a length 4 meters. The speed of sound in air is assumed to be $344 \mathrm{~m} / \mathrm{s}$. What is the wavelength of its fundamental frequency? meters
\square

Question 12

A pipe with both ends open has a length 4 meters. The speed of sound in air is assumed to be $344 \mathrm{~m} / \mathrm{s}$. What is its fundamental frequency? Hz
\square

Question 13

 1 ptsA pipe with both ends open has a length 4 meters. The speed of sound in air is assumed to be $344 \mathrm{~m} / \mathrm{s}$. What is the frequency of its second harmonic? Hz
\square

Question 14

A pipe with both ends open has a length 4 meters. The speed of sound in air is assumed to be $344 \mathrm{~m} / \mathrm{s}$. What is the wavelength of its second harmonic? meters
\square

A pipe with both ends open has a length 4 meters. The speed of sound in air is assumed to be $344 \mathrm{~m} / \mathrm{s}$. What is the frequency of its third harmonic? Hz
\square

Question 16

A pipe with both ends open has a length 4 meters. The speed of sound in air is assumed to be $344 \mathrm{~m} / \mathrm{s}$. What is the wavelength of its third harmonic? meters
\square

Question 17

A pipe with one end open and one end closed has a length of 2 meters. The speed of sound in air is assumed to be $344 \mathrm{~m} / \mathrm{s}$. What is the wavelength of its fundamental frequency? meters
\square

Question 18

A pipe with one end open and one end closed has a length of 2 meters. The speed of sound in air is assumed to be $344 \mathrm{~m} / \mathrm{s}$. What is its fundamental frequency? Hz
\square

A pipe with one end open and one end closed has a length of 2 meters. The speed of sound in air is assumed to be $344 \mathrm{~m} / \mathrm{s}$. What is the wavelength of its second harmonic? meters
\square

A pipe with one end open and one end closed has a length of 2 meters. The speed of sound in air is assumed to be $344 \mathrm{~m} / \mathrm{s}$. What is the frequency of its second harmonic? Hz
\square

Question 21

A wave travels on a string. When the wave reaches a specific point on the string, that point will move \qquad _.
vertically
not at all

- horizontally

As the tension of a string increases, the velocity of waves traveling on the string
\qquad -
stay the same
decrease

Question 23

As the mass per unit length of a string increases, the velocity of waves traveling on the string \qquad .
stays the same
decreases
increases

Question 24

The velocity of a wave depends on which of the following?
the medium

- period
frequency
wavelength

Question 25

Sound waves can travel in a vacuum (i.e. no air).

True

Question 26

Two pitches are played at the same time. The first pitch has a frequency of 125 Hz . The second pitch has a frequency of 122 Hz . What is the beat frequency? Hz
\square

Question 27

1 pts

You are standing still on a street corner when a police car with sirens approaches you at a high speed. The apparent frequency you experience is \qquad compared to the actual frequency of the siren.

- higher
o the same
- lower

Question 28

You are standing still on a street corner when a police car with sirens drives away from you at a high speed. The apparent frequency you experience is \qquad compared to the actual frequency of the siren.

Iowerthe same

- higher

Question 29

You are in a car driving at a high speed toward a loud stationary siren. The apparent frequency you experience is \qquad compared to the actual frequency of the siren.

O lower
the same

- higher

Question 30

 1 ptsYou are in a car driving at a high speed away from a loud stationary siren. The apparent frequency you experience is \qquad compared to the actual frequency of the siren.lower

- higher
- the same

Not saved

