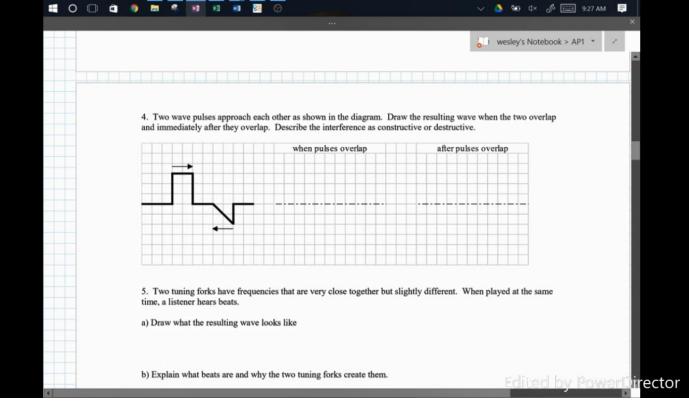
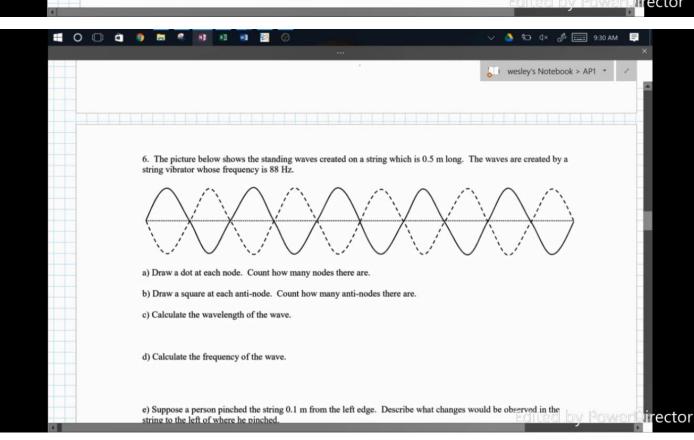

Waves WS 1

VC3 VV3 I			
1.	Define a transverse wave. Draw one.		
	a.	Descri	be how to create a transverse wave on a stretched spring.
	b.	Descri I.	be how you would control: Frequency.
			,
		II.	Velocity
		11.	velocity
		III.	Wavelength
		IV.	Amplitude


2. Define a longitudinal wave. Draw one.



e. Through what distance does a point on the string move during one wave cycle.

f. What is the average speed of a point on the string?

g. Describe how each your answers would change if the frequency were doubled.

f. Suppose a person pinched the string .13 m from the left edge. Describe what changes would be observed in the string to the left of where he pinched.
g. The frequency of vibration is increased to the next highest level that produces a standing wave. Calculate this frequency.
7. During a physics lab, a student holds a piece of pipe in water so he can adjust the length of the pipe sticking out of the water. The speed of the sound in the room is 340 m/s. The student holds a ringing tuning fork next to the pipe and increases the length until it first resonates when .2 meters is protruding from the water.
a. Draw the standing wave in the pipe.
b. Calculate the frequency of the tuning fork.
c.Calculate the next highest frequency turning fork which will cause the pipe to resonate at this length. Draw the standing wave in this case.
d. What is the next highest length of pipe protruding from the water which will cause the original tuning fork to resonate? Draw the standing wave in this case.